发帖数

71

原创数

71

关注者

18

阅读数

13843

点赞数

5

姜维

  • Buck电路讲解


    降压电路在电子产品里面应为的非常的多,降压就是把一个高的电压变成一个我们可以用的低电压。能实现这种降压的电路有很多种,其中就有线性的电源,如果输入与输出相差不大也可以直接用三端实现,但是如果是功率比较大,效率就非常的低,为了解决效率高的问题,对于功率比较大的都用开关电源,对开关电源的降压电路就是下面的电路了,

    image.png

    开关电源降压就是通过控制MOS管的开与关实现的,那么对应MOS开通的时候二极管相当于断开,MOS管饱和导通,那么MOS管上面有一个Rds-on串联在整个回路里面,那电感上面的电压就是VL=Vin-Vo-VRds-on 因为Rds-on的电阻都比较小,所以我们可以忽略

    电感两端加上电压后,电感电流线性上升.MOS管开通的的时间是Ton=D×T T是开通周期,

    image.png

    当开关管开通到一定时间后,MOS管需要关断,如果一直开通的Vo一定会等于Vin,这就没有实现降压的效果,当MOS管关断的时候,电感电压会反向,电流开始下降,那么这个回路是二极管导通,就像下面的图一样。

    image.png

    image.png

    image.png

    MOS管开通的时为onMOS管关断的时候为off,我们既然知道了电感的平均电流等于Io,我们只有设定好纹波电流就可以计算出来电感量。下面是计算公式

    image.png

    收藏 0 回复 0 浏览 208
  • 反激电解电容的选择


    开关电源的输出都有电容,大部分都是用的电解电容,电解电容的选择一般是根据器耐压,纹波电流,纹波电压等来选择的,但是其容值的现在大部分都是根据经验值去选择,今天我来讲下反激DCM模式的电解电容选择。

    首先电压的的选择是非常简单的额,一般是根据输出的电压的值,当然再要考虑过压的电压值,一般比输出过压值要高1.2倍。

    容值的选择首先是要根据去纹波电压来现在,我们知道电容的充放电的过程都会有纹波电压的产生,除此之外电解电容不是一个理想的电容,它有ESRESL等串联在电解的上面,高频的纹波电流会产生纹波电压,这个纹波电压还不小,所以实际的计算的时候是要考虑,

    并且电解电容的寿命是根据电容的温度有关系的额,但是我们的知道,电解电容的寿命与有效值纹波电流有关系。

    image.png

    根据上面的图,首先要分析电解电容上面的几个电流,IL是二极管导通后变压器的电流,Io就是输出负载的电流,Ic的是电容上面的电流,但是电容是有充电电流Ic还有放电电流-Ic,对于一个稳定了的电源电解电容上面的充电电流与放电电流应该是相等的,如果充电电流大于放电电流,输出电压肯定会升高,要是充电电流小于放电电流的输出电压会下降。

    所以稳定的时候电容上面的充电电流与放电电流是相对的。

    那么具体的看下面的图,下图中的Isp是副边变压器的最大电流,是原边最大电流Ip通过匝比折算来的,Isp=n×Ipn是原边与副边的匝比.on为原边导通,off是原边关断

    image.png


    从上面的图上可以看出:

    1、当原边导通的时候,输出的电流Io都是由电解电容提供。

    2、 当原边关断的时候,绕组上面的电流最导通值Isp是大于输出Io,这个时候输出的电流是由变压器     IL提供,同时电解电容上面也有充电。

    3、当变压的电流小于Io的时候,输出的电流一部分是变压器提供,一部分是电解电容提供。

    电容的充电与放电一定会因为电容的电压有变化,充电的时候 一定是从最低充开始,当绕组电流等于输出电流的时候,电容的纹波电压是最大值,然后就是放电,一直放到下一场二极管导通为止,这个是电容的纹波电压是最低的。

    那么电容的充放电引起的纹波电流的计算是怎么样的了,充电的整个过程就是电容上面的纹波电压由最低到最高的过程,所以只有知道充电时间就可以求出纹波电压了。

    首先需要求出来给电容充电的时间就是二极管的电流大于输出电流的整个时间,

    image.png

    收藏 0 回复 0 浏览 192
  • 压敏电阻应用2

    压敏电阻在电源里面非常的常见。

    它的应用一般都是在开关电源的输入部分,用来防雷击浪涌。

    1、一般的应用是输入端L相与N相跨接一压敏电阻。

    2、共模电感上也可能会放陶瓷放电管。

    3、L相与N相对大地上用压敏串陶瓷放电管。

    这些电路的作用都是用来防雷用,电路都是非常的常见。

    但是压敏电阻的选取的过程中,很多的工程师都是说是经验,对于压敏电阻上的一些参数了解的非常少。

    下图是我们的雷击浪涌的电流组合波形

    image.png

    下面图1与图2都是我们常用的防雷电路

    image.png

    image.png

    1、压敏电阻的选取是要根据我们的输入电压来选取,我们是需要查看压敏电阻的规格书,一般我的输入电压AC85V-264V,我们在选取压敏电阻的时候就需要查看规格书上面的最大允许电压要比我们的输入电压要高。

    列如我们常用的471 它的最大允许电压AC300V  DC385V

    同时通流量也是需要注意的,一般规格书上给出来的通流是1次的通流量,我们在选取的时候一定需要留有很大的余量,通流量是我们选择直径的依据,如果一个417KD10 的压敏电阻在计算的时候刚好接近规格书上的通流量2500A,我们可以选取两个来并,如果空间不够的时候我们可以选择加强型的。

    看下图我们能看出来我们普通型的通流量是2500A,增强型的是3500A

    image.png

    2上面我们看到压敏电阻上串联陶瓷放电管,陶瓷放电管上并联了电阻,

    陶瓷放电管的作用是触发导通后,陶瓷放电管上的残余电压非常低,这样的最后的钳位电压基本上是由压敏电阻来决定,陶瓷放电与压敏电阻串联时,我们可以选取391的压敏电阻+600V的陶瓷放电管,这样钳位电压要比单各压敏电阻471要低很多。391的钳位电话有时650V 471的钳位电压时775V

    并电阻在陶瓷放电管上的作用:有些工程师在选取的陶瓷放电管时,导通电压可能小于输入电压,因为压敏电阻上的寄宿电容要比陶瓷放电管上的电容大的多,一般压敏电阻上的寄生电容有1KHz时有几百pF 而陶瓷放电管在1MHz时只有几pF。因此寄生电容上的分压,导致陶瓷放电管上的压降基本上等于输入电压。这时并电阻就可以降低放电管上的压降。

    共模电感上并联陶瓷放电管与L相与N相对大地跨接压敏电阻串陶瓷放电管一样的作用,有时可能只会出现一组电路。作用都时用来防共模雷击。


    收藏 0 回复 0 浏览 183
  • 加谐波补偿的原因你真的弄懂了吗


    我们在做反激的电源的时候占空比都是在0.5一下,可以说是每一个做反激的工程师达成的共识了,但是对于为什么D0.5,可能大部分工程师都不清楚,一个笼统的说法是会引起次谐振荡,需要加谐波补偿,但是其具体原因究竟是什么了,

    首先我们市面上面大部分的反激芯片的控制方式都是电流型的,这样做的好处是可以逐周期控制整个电源,过功率或是过流的时候能很好的保护整个电源系统。

    那么对与一个电流型的芯片控制是一个什么样的了,看下面的图,它有电压环做外环,电流环做内环控制,电压环是通过输出电压与参考电压进行比较后经过误差放电器然后在与变压器的电流进行比较,这就是电流型的控制芯片。

    image.png

    因为是电流型的控制方式,那么当限流电阻上面的电压超过了Vcom电压的时候,MOS管关断,整个电源都是工作在稳定状态的时候,输入电压与输出电压不变,那么变压器上面的电流上升斜率与下降斜率都是一样,为此当整个电源工作在DCM模式的时候,如果限流电阻上面出现了扰动电流的时候,DCM的会提前出现关断,下一个周期还是会从原来的电流位置开始。

    image.png

    按照下一个周期又是从零开始的原则,如果扰动持续在,那么整个系统会去调控占空比来实现整个系统的平衡,这样看来DCM是不会出现次谐波振荡的。

    下面我来看CCM模式

    首先来看占空比小于0.5的时候的波形,看下面的图,变压器上面的电流上升斜率有下降斜率不变,当扰动波形出现的时候,再瞬态的时候,Vcom的电压是不变的,随时间的推移,扰动的量是越来越小,

    从上面的波形来看的话,整个系统是收敛的。

    image.png

    接下来我们看下连续模式下面占空比大于0.5的时候出现一个什么样的现象,

    看下面的图,随时间的推移,整个扰动出现了放大的,并没像我们的小于0.5的时候一样整个系统收敛的,而是出现了放大的状态,为此出现了整个系统会出大小波,也就是我们常说的次谐振荡,这也是为什么我们的反激大部分占空比设计到了0.5以下,

    image.png

    根据上面的的几个波形,次谐振荡出现的条件可以总结为一下几点:

    1、必须是电流型的控制芯片,

    2、工作在是连续模式下面

    3、占空比一定要大于0.5的时候

    以上三个条件缺一个都不会出现次谐振荡,如果出现了磁芯振荡的时候,可以通过加谐波补偿来消除次谐振荡。


    收藏 0 回复 0 浏览 183
  • 反激变压器的感量计算


    目前市面上的电源大部分是反激的拓扑结构,变压器是反激电源的核心,并且变压器的好坏决定整个电源的性能,要设计好一个变压器,是需要根据一个电源的要求来合理的设计好参数,不同的参数值就对应不同的要求,比如要求成本的非常低可能对于温升等就会要求少点,或是要求性能非常好的可能成本就会多点,或是要求体积小的效率可能会低点等等,很多时候都是侧重了每几个点,当然其他的也要综合的考虑,所以变压器的设计非常的灵活,如果是设计不合理整个电源需要重新设计。


    下面我们系统的讲下变压器的设计,设计变压器首先需要选定一个工作点,一般我们都是选定在最小输入电压的时最大输出功率来设计。


    下面我们对变压器的设计进行详细的说明。


    第一步:计算输入功率Pin

    确定好输出的功率Po,然后是假设电源能到达的效率η,根据输出功率与效率来计算出输入的功率image.png

    第二步:确定输入电压范围

    知道输入功率后,就是要确定好输入电压的范围了,

    客户给我们的输入范围,比如输入的电压是AC85-AC264V,是输入的交流电压的有效值,但是反激电源是一个DC-DC的拓扑,需要知道输入的DC范围,所以我们需要一个电解电容滤波,有电解电容滤波后,反激输入的最大DC电压就是AC264V的峰值电压了,Vin_max=264×1.414≈373V


    知道了最大电压还需要知道最小输入电压,最小的输入电压是在交流输入最小的时候,看下面的图,输入交流电压整流后是馒头波,频率是输入的2倍,当电解电容充到输入峰值电压Vpk值后,电容停止充电了,电容开始放电,当放电到下一个周期的输入电压等于电容上面的电压Vin_min的时候,电容再次充电,那么这个Vin_min的电压是由输入的功率与输入的电解电容决定的。

    image.png

    一般我们可以经验来选择,对于AC85V输入电压的时候,是1W功率选择2uF的电解电容.


    根据经验值选择好电容后,输入电解电容上面的纹波电压Vrip大概是40V,知道了纹波电压,就可以计算出来image.png

    根据电解电容上的最大与最小电压就能确定变压器原边的输入电压范围是DC80V-373V


    第三步:确定好变压器的工作模式

    变压器的工作模式就是工作在CCM、DCM的模式了,一般的反激都是工作在DCM的模式,当然现在很多都是设计在QR的模式。


    我们这里以DCM模式为列,也就是输出最大功率并在输入最低电压时工作在临界模式。


    第四步:确好反激变压器的反射电压Vor

    Vor的确定是根据最小输入电压的时候的最大占空比Dmax,同时需要根据最大输入电压Vin_max来决定MOS管的电压。


    首先是最大占空比的确定,反激值的最大占空比一般是不能大于0.5,也就是Vor<Vin_min。


    MOS管的最大电压VDSS取决image.png


    MOSFET的应力是由最大输入电压Vin_max、反射电压Vor与尖峰电压Vp。


    VDDS*90%=Vin_max+Vor+Vp,取值90%是因为低温的原因。


    尖峰电压一般我们取小80-100V

    如果MOS管的电压选择650V的管子,

    Vor=VDSS*90%-Vp-Vin_max=650V*90%-100V-373V=112V

    但是根据输入最小电压80V,Vor<80V

    所以我们可以选择Vor=75V。


    第五步:根据Vor与变压器最小输入电压计算最大占空比

    image.png

    第六步:开关频率fs的设定

    一般我们都是设定在45-65kHZ左右。


    第七步:原边绕阻最大峰值电流Ipk的确定

    根据输入电压与输入功率可以计算出变压器绕组的平均值电流image.png

    image.png

    再根据最大占空比可以计算出来原边开通时的最大平均值电流Iave_on

    image.png

    计算出来原边开通平均值后就可以计算出来原边的峰值电流Ipk=2*Iave_on

    image.png


    第八步:计算出变压器原边的感量Lp

    根据峰值电流Ipk就可以计算出原边的感量Lp

    image.png


    这样就可以计算出来原边的感量了。






    收藏 1 回复 0 浏览 167
×
姜维