发帖数

71

原创数

71

关注者

18

阅读数

13517

点赞数

5

姜维

  • 开关电源的各种保护


    开关电源输出过压保护电路有有通过控制自身电源来调节的,也有防止外部电压过高带来的电源损伤,自身调节一般是指,过压电路是在反馈环路出现问题的时候,控制输出电压不至于太高,或者是关闭开关电源控制,来避免输出电解电容与后级的用电设备损坏。那我们就要知道当过压了,是限制电压不要超过一个电压还是要求关闭电源。只有知道了要求后,那么就根据要求来设计电路。

    图1是输出保护电路的一种,这种电路应用非常多,他是用TL431与光耦的搭配,靠光耦的导通来控制原边的控制芯片停机,实现过于保护,的他的好处是过压保护电压精度高,一般应用到后级需要严格控制电源的电源。他的成本是比较高的。

    图2也是一种输出保护电路,这种电路就是在上一个电路的基础上进行了变动,原理是本来利用TL431来检测输出电压的电路改成了一个稳压管,稳压管的精度是没有TL431高的,但是价格比TL431便宜,这也就是他的优势,缺点是他的精度不高,对于这种电路一般应用在没有要求具体多少电压过压的电源,就是在出现过压的时候起到一个保护电解电容的作用,不至于电解电容坏。

    上面的两种方法,我们一直看到有一个光耦的存在,这是应为我们的电源是隔离的原因,但是光耦的价格也是不便宜的。

    如果不需要过压精度很高,那么我们是不是可以想办法吧光耦去除,而且是能检测输出电压的办法,是不是最好了,

    那有什么好的办法了,隔离不用光耦,我们是不是就想到用互感器等磁芯器件,但是这又违背了价格便宜的问题,最好是在不增加其他器件的基础上就能实现过压保护功能。

    隔离电源我们都会有一个隔离变压器,这是每一个开关电源都有的,那么我们是不是可以利用这一个开关变压器来实现,我们知道电源是有VCC绕组,我们能不能用VCC绕组来实现过压保护了,肯定是可以的,只是精度与一致性不好,但是价格便宜,如果在你的接受范围内的话,是不是很好。那么就有了下面的电路图,下面Latch脚是芯片检测过压的脚。

    上面的三种电路都是对于电源自身反馈环路有问题的时才有作用,那要是输出电压被外电压强制提高怎么办了,很多的时候就想到了,看下面的图,是不是增加了一个TVS,这一个TVS只能够钳位过压非常断的时间,要是长时间的,可能会坏,但是他的价格便宜。   

    为了防止过压时间长,我可以通过下面的电路来防止电源被外电压过压损坏,这一个电路的作用就把输出电压与外界电压用二极管隔离开,我们可以给外部供电,但是外部电进不来,但是带来其他的问题,二极管上面是有正向压降的,通过一定电路后会有损耗,通常VF与电流温度有关,那么输出电压精度不高。为了解决和一个问题,很多时候用MOS管替代,用MOS替代就带来了一堆的驱动电路,这样增加了电路的复杂性也增加了成本。如果于与输出电流不大,要求精度不高的可以就用二极管。

    收藏 0 回复 0 浏览 100
  • 压敏电阻应用1

    image.png

    image.png

    从上图看471KD10471KD20的数据来比较,我们可以看出允许的最大交流与直流电压都相同,但是最大的钳位电压上面我们可以看出KD10的与KD20通过的电流时25A100A这说明我们在同一个电路上,打同一等级的雷击浪涌时,KD10的钳位电压要比KD20的高。  

    从这些数据来看的话,我们在做雷击实验的时候要是不过的话,可以选择大一号的压敏电阻,这样我们的产品要安全的多。有时可以并联一个同一型号的压敏电阻也可以降低钳位电压,从而达到很好的保护我们的产品。

    image.png

    收藏 0 回复 0 浏览 99
  • 变压器的制作


    电源的变压器设计好后,大部分的工程师都会试绕下,看具体的设计是不是合理,因为变压器还是有很大一部分是结构上面的问题,变压器绕制的时候就需要注意一些事项首先就是我们的骨架的确定,用什么样的磁芯骨架对于变压器的绕组是有很大的不同,比如相同的AP,有磁芯的横截面积Ae小的但是绕线空间Aw比较大,也可以选择Ae值大的,绕线空间相对来说小的。


    确定好磁芯与骨架后,就可以计算原副边圈数,然后根据线圈上通过的有效值电流来计算所以用的绕线的横截面积,这里计算出来的绕线的直径只是导线纯铜的横截面积,我们的变压绕线用的线有漆包线、多股线、三层绝缘线、丝包线、铜箔等。我们在绕制变压器的时候对于线的选择是需要注意:


    1:漆包线是一种铜线外面包有一层比较薄油漆叫电器绝缘层,它里面含有油料、树脂、颜料、填料和溶剂等。为了达到电器绝缘的要求,电器绝缘漆的膜层结构不同于一般油漆,它的电阻系数大,导热性能好,并且有坚固的机械性能和良好的抗潮性,有一定的耐压耐温度作用,我绕制变压的时候圈数是紧密靠在一起的。


    2、多股线是由多跟漆包线组合而成,一般单根的直径是0.1mm的线,然后有多股,比如50股0.1mm的线绞合在一起,这样的线一般是用来减少集肤效应,当单根小直径超过0.5mm以后,就不是很建议用单根线了,一般都用多股线,多股线与漆包线没有什么区别。


    3、丝包线是指在导线或漆包绞合线外面包一层天然丝或纤维丝(尼龙、聚酯纤维、天然丝、自粘丝等)做绝缘层而制成的电磁线,丝包线的绝缘程度要比多股线好。


    4、三层绝缘线三重绝缘线是一种高性能绝缘导线,其有三层绝缘材料,中间是导线芯;最外层是透明的玻璃纤维,中间层是喷漆涂层;最内层是被国外市场称之为“黄金薄膜”的一厚度仅仅几微米的聚酰胺薄膜,但是却可以承受3KV的脉冲高压。绝缘材料的总厚度不超过100μm。所以我们在计算变压器的时候,如果要使用三重绝缘线,一般把外径加上0.2mm。


    5、铜箔一般都是输出大电流的时候应用,一般选择铜箔的时候需要选择铜箔的宽度与厚度,铜箔在宽度是根据磁芯骨架来选择,然后根据需要截面积计算厚度。

    image.png

    当我知道线材后,在选择线的时候根据需要选择合适的线径,在就是根据安规要求,是选择挡墙还是选择一边绕组用三层绝缘下,用三层绝缘线的成本高,但是少了绕挡墙的工时,这样减少了绕线的工序,如果原副边都用漆包线,就需要加挡墙。


    加挡墙的工艺里面需要注意,每绕一次挡墙的厚度都需要与绕的绕组厚度一样,当绕完一个绕组后,再根据需要加层间绝缘胶带,然后再加下一个绕组的挡墙,一般原边绕组与副边绕组需要6mm爬电距离,也就是原边绕组加3mm挡墙,副边绕组也要加3mm的挡墙。


    绕线在绕组的过程中需要注意一般是紧密绕制,如果不能绕满一层的需要均匀分布,这样有利于下面一个绕组的绕制,绕制的过程中不能有重叠绕制与绕线绕到挡墙上面的。


    这是避绕组拉伤与浪费绕线空间的原因。如果是绕到挡墙上面,这样原副边的安规就不够了。

    image.png

    因为绕制的过程中,胶带不一定是平整的,所以绝缘胶带的宽度一定要大于骨架的骨槽宽度0.5mm,然后是在自作的过程中挂脚需要注意,绕组在挂到脚位上之前,需要套一根套管,这跟套管一般都是铁氟龙套管,大小以刚好能套住绕线为好,这样可以减小绕线空间,对于套管的位置需要注意看图二,在绕线的过程中不要出现图二中的B、C两种现象。

    image.png

    变压绕线绕好后就是组装磁芯了,在组装磁芯前需要开气隙来控制感量,对开气隙一般有叠气隙,还有磨气隙两种,一般工程师自己做样品都是叠气隙,这是因为没有专业的设备,如果是产品还是尽量磨气隙为好,按经验来说磨气隙的EMI会好点,叠气隙的差点,但是叠气隙的效率会高点,叠气隙所用的材料一般用绕变压用的层间绝缘胶带,这里特别注意不能用挡墙胶带。当气隙调整好后就是组装了,组装的时候磁芯需要对接好后然按紧后用胶带固定,固定也是用黄胶带,一般需要2-3层,然后再测下电器参数与安规,测试完全后整个变压器就制作完成了。

    收藏 0 回复 0 浏览 93
  • 反激变压器磁芯的选择

         

    反激电源的变压器设计时候当原边感量计算好以后,这个时候就需要选择磁芯,然后计算圈数了,磁芯的选择对于大部的工程师都靠经验去选取的,当然可以在网上找到很多的关于多少功率与开关频率所对应的磁芯,但是有很多的工程师可能会看到一些书上面用的Ap法去计算变压。


    很多刚学做电源的工程,对于Ap法是非常感兴趣的,下面我们就基于Ap法是怎么来的进行推导下。


    首先Ap法就是根据磁芯的横截面积Ae与绕线的窗口面积Aw来计算的,AP=AeXAw,对于磁芯的横截面积Ae与绕线窗口面积Aw是可以在磁芯规格书里面查到的。有很多的磁芯规格书也是直接给出Ap值的,

    首先反激变压器是根据临界模式来计算的,我们以最大功率最小输入电压时变压器工作在临界模式来计算的。

    image.png

    image.png

    变压器原边峰值电流Ipk

    原边圈数Np     副边圈数Ns

    Ip_rms为原边绕组的有效值电流

    Is_rms为副边绕组的有效值电流

    J绕组电流密度6A/mm^2      Vor反射电压

    Kw为磁芯绕线窗口的利用率0.4

    原边绕组占用的窗口面积

    image.png

    副边绕组占用的窗口面积


    image.png

    整个变压器Aw=Awp+Aws

    那么这里需要计算出来原边的Np、Ns、Ip_rms、Is_rms

    计算出来了Np、Ns、Ip_rms、Is_rms后,我们就可以计算原边绕组与副边绕组所占用的窗口面积Aw

    image.png

    把上面的NpNsIp_rmsIs_rm代入到下面的公式。

    image.png

    代入后得到了公式

    image.png

    又因为

    image.png

    化解后得到下面公式

    image.png

    因为变压器在绕组的过程中,会有挡墙,绝缘胶带,线与线之间的空隙等,我们磁芯的窗口利用率是不能到100%,根据的部分工程师的经验,一般磁芯的窗口利用率为0.4左右,我们这里选择Kw=0.4

    那么实际的Aw1=Aw÷0.4

    image.png

    知道了Aw后,就是需要计算Ap了,Ap=Aw×Ae

    image.png

    上面就计算出来了Ap的值了,KwBmaxJ都是固定值,所以不同的功率Pin与开关频率fs,去值不同的Dmax等有关系,占空比如果在最低输入电压的时候可以选择0.5左右,

    image.png

    代入到Ap里面可以计算出来实际的Ap

    image.png

    从上面的公式里面可以得出,功率越的磁芯选择越大,频率越大,磁芯的选择越小。

    根据上面的公式计算出来了Ap后再去选择所对应的磁芯。

    确定好磁芯后,根据磁芯的横截面积Ae值,可以计算出来变压器的圈数


    收藏 0 回复 0 浏览 92
  • 开关电源反馈光耦的选择


    光耦在开关电源中应用非常的常见,它是起到一个原副边的信号传输,并且能有效隔离原副边的元器件,当然能传递信号并且有隔离作用的元器件很多,但光耦是一个价格便宜并且外围电路简单的特点,因为要隔离原副边,所以一般开关电源中的光耦的耐压是要选择5000V(有效值)。

    光耦首先是分线性光耦与非线性光耦,在我们开关电源中做反馈用的光耦是线性光耦,比如PC817,对于PC817的话,有A档、B档、C档、D档之分

    这些档位其实是根据CTR(传输比)来分类的。

    CTR是描述光耦控制特性的参数,也就是副边的Ic电流与原边的输入IF电流的百分比。

    具体的参数见下面的表格:

    image.pngimage.png

    从上面的表格来看,每一个档位的CTR都是在一定范围内的,比如A档是80%-160%,这个范围的变化是根据不同的IF电流所得来的,根据PC817A的规格书,我们能看到一个关于IF电流与传输比的曲线图。他的传输比是随电流IF变化而变化的,最大的传输比是在10-20mA之间的电流,而开关电源的反馈电流一般是非常小的。一般都是在1-2mA之内。

    image.png

    那么我们在设计开关电源的时候要先确定好光耦IC的电流,一般IC电流是芯片的FB所能流出的最大电流,下面我们来实际计算下。

    如下面的图,典型的TL431+PC817 的应用图。

    image.png

    光耦的CTRR1R2R3怎么去选取。

    首先要确定好Fb脚的最大的IC电流,假设IC最大电流是1mAVo5V,因为光耦的发光二极的Vf压降一般是1-1.4V之间,R3的作用是在光耦没有导通的时候需要给TL431提供一个1mA的启动电流,所以R3的电阻的选取是VfTL431的启动电流  1V÷1mA=1K,当Fb脚需要流过最大电流的时候,光耦原边二极管上面需要的电流If就是IC/CTR=If,那么这里的CTR是一个范围,而不是一个非常准确的数字,比如我们用PC817ACTR80%-160%,所以说在计算的时候要用最小的CTR  80%去计算。

    根据传输比的定义CTR= Ic÷IfIf=IC÷CTR=1mA÷80%=1.25mA,又因为光耦的传输比 80%160%是在25℃环境温度下的参数,而光耦在不同温度下面CTR是变化的,看下面温度与传输比的曲线图,当光耦温度到100℃的时候CTR只有原来的60%,也就是25℃的时候CTR80%,到100℃的时候变成了80%×60%=48%

    那么根据最高温度100℃的传输比来计算上面的If=IC÷CTR=1mA÷48%2.1mA了,在实际计算的时候还要流有一定的余量,所以根据上面的计算的话,我们If电流要大于2.1mA,一般是计算值的1.3-1.5倍电流就可以了,我们假设1.3倍的电流,2.1mA×1.3=2.73mA

    image.png

    根据上面的计算,我们光耦的原边的电流最大是2.73mA,然后我们在去看光耦在100℃下面的最大If电流,如果下面的图,光耦在100℃的时候最大的If18mA,我们实际最大电流是小于3mA,留有非常大的余量。那么因为光衰引起的问题完全可以不用去考虑。

    那么R2=5-2.5-1.4)÷(2.73+1=295Ω,所以我们实际取值的时候可以取240Ω。

    image.png


    收藏 0 回复 0 浏览 91
×
姜维