个人成就
- 发布了41篇内容
- 获得了7次赞同
- 获得了15次收藏
个人简介
擅长领域
暂时没有设置哦~
-
用MT3540芯片设计BOOST电路(2)
用MT3540芯片设计BOOST电路
当开关断开时:
比如说,当开关闭合,经过了t1时间后,开关再断开。
由于开关断开,就形成了新的回路,如上图所示。由于负载电流比较大,电感上的电流在减小。根据电感的特性:阻碍电流的变化。所以产生右正左负的自感电动势。这个电动势和电源电压是一个方向,所以从AB两个节点往左看,它们2个是叠加在一起的,Vin+VL。也就是说,电容两端的电压如果是Vo的话,那么
。Vin我们是知道的,但是VL呢?这个要取决于Vo是多少了,
。所以,这里的关键就是知道Vo多少。一般在电路设计时,Vo是取决于项目需求的,比如说12V,比如说15V。所以,我们只要根据这个就能确定电感电压VL了。如果电路稳定,那么Vo肯定也是稳定的。所以,VL是一个常数。
那么,知道了上面这个关系后,此时,电感电流是这样变化的:
对于电感来说,可以把它看作一个搬运能量的工具,而电感是通过充能和放能来搬运的,一次充能+一次放能,它的一个周期内的平均电流就是给负载搬运的平均能量。
也就是阴影部分的平均电流,就是电感在一个周期内搬运的平均能量。
在理解了上面的基础上,我们再回来讨论电感本身的充放电。对于电感来说,充能=放能,才能达到电感的平衡,也就是说电感充能时的电流变化量= 电感放能时的电流变化量,也就是Δion =Δioff。为什么这么说呢?不信你看下面这几幅图:
假设电感上的电流是这样变化的,那么输出平均电流就是Io。
如果后面的负载增大,那么电感上的平均电流就是这样的Io。
如果负载减小,那么电感上的平均电流就是这样的Io。上面这三种电感电流波形有一个很别致的名字,分别叫:BCM、CCM、DCM,临界模式、连续模式、断续模式。
如果电感上的充能Δion ≠ 放能Δioff 呢?
就会出现这样的情况,请问电感上的平均电流还是稳定的吗?很明显不稳定。所以,这里的关键就是:Δion =Δioff。
这里不得不又提到刚才的万金油公式了:
,根据这个公式,我可以做一个变换:
,而di就是电流变化量Δi,dt就是时间变化量Δt,所以:
在开关闭合的ton期间:
在开关断开的toff期间:
由于我们分析过,Δion =Δioff。所以
,这里我们要忽略电流方向上的关系,所以等式右边取它的绝对值,这个大家要搞清楚,也就是变成了下面的式子:
再进一步的变换,把L约掉,就有了:
上面这个式子就是大名鼎鼎的伏秒平衡公式。根据这个公式我们可以推导出来占空比:
所以,
其中,D就是占空比,
,表示的意思就是开关打开的时间在整个周期的占比。
这个占空比是什么意思呢?其实就是指最大占空比。当电感从BCM进入到CCM模式后,它的占空比已经达到最大了,也就是
。只有在DCM模式,占空比是随着负载变化而变化的:负载越小,占空比越小;负载越大,占空比越大。这里要区分好,很多人对这里的概念还是很模糊的。
那么,可能会有人好奇:占空比一样,在BCM到CCM是如何提供更大的负载电流Io呢?其实,这里涉及到一个瞬态的变化过程。
在负载突然增大的这段时间内,开关一直处于打开的,直到满足负载电流Io。在此期间虽然开关一直闭合,但是我们一般不谈占空比,因为这是瞬态的情况。占空比一般在稳态情况下谈的。所以,我们计算出来的占空比
,指的是稳态最大占空比,它在进入BCM模式时,已经达到最大值了。
-
MOSFET讲解(10)
MOSFET讲解
我们希望米勒平台的时间短,但是往往容易出现震荡,反而发热更大。另一方面,如果米勒平台时间短,对于高压管子来说,开通时dv/dt大,所包含的谐波分量就大。
什么是谐波分量呢?任何一个波形都可以用若干个正弦波进行叠加,那么,我们MOSFET由于米勒平台时间短,dv/dt就很大,就表示开关波形的沿越陡,棱角越分明。一般我们所说的基波是一个标准的正弦波,dv/dt产生的开关波形,可以由这个基波和很多个高次谐波分量的正弦波叠加。如果沿越陡,谐波分量就越多;如果沿越缓,谐波分量就越少。谐波分量其实是一个辐射源,如果dv/dt越缓,那么谐波分量越少,EMC更加容易通过。
那么,高压管子的平台时间多少合适呢?高频载波的话,米勒平台时间在300ns~1us,那么1us可能发热会大一些,具体要看封装和Id电流的大小,如果最后测试下来,温度能接受,那也是可以的。那么如果MOSFET只用于电源上电和断电时的开关来用,那么这个平台时间长一点也没关系,毕竟是低频的。
对于低压管子来说,由于GS电容偏大,所以Igs电流要大,栅极电阻要更小,建议10R~100R。也就是说,虽然低压的管子GS电容大,但是栅极电阻小,米勒平台的时间也不会太长。
那么,低压管子的平台时间多少合适呢?可以更小一些,90ns~300ns。这些都是个人的一些看法,不代表权威性,要根据自己的项目各自评估。
那么关于高压管子和低压管子,具体的米勒平台的时间,还需要看Vgs波形是否震荡为准。
尤其在MOSFET用于上下桥互补斩波的时候,可能会出现一些问题。什么是上下桥互补斩波呢?
上面这幅图就是上下桥互补输出,意思就是上下管不能同时导通,否则就短路了。上管开通时,下管就要关闭;下管开通时,上管也要关闭,这就是互补输出的含义。
如果驱动上管的PWM信号是S1,驱动下管的PWM信号是S2。
那么S1为低,S2为高;S1为高,S2为低。同时,我们也知道,MOSFET的开通和关断都是有延时的,再加上刚刚说的MOSFET开通或关断出现震荡,那么,有可能出现上下互通的情况。一般我们避免这种情况发生,会加一个死区。
可以让开通延时,下降时间不变。这就是我们互补输出方式。
在GS波形正常情况下,上面这个电路是没有问题的。但是由于GD之间是有电容的。
假设我们的管子开通快,关断也快。另外,我们前面也讲到过,GD之间的米勒电容Cgd与漏极电压有关。那么接下来,讨论在死区期间,其中一个管子开通的一瞬间,对另一个管子GS波形的影响。
在死区期间,C4 和C7是如何分压的啊?M点实际上是分压了Vbus的一半是吧,这里M点在死区期间的电压是155V。
假设死区时间过后,上管先导通的瞬间,M点的电压从155V变成310V,有一个很高的dv/dt,而且瞬间会留下来一个很大的电流,那么理想情况下肯定是往负载那边流走,但事实上,会通过C5电容流到S2端,同时也会经过C6流到地。这是因为下管关闭,S2为0V,C6相当于短路,但更主要的电流还是流过C6。
那么,既然对C6电容进行充电,C6的电压就会往上升,就有可能导致达到下管的开通阈值电压,那么下管就会误导通。
-
MOSFET讲解(4)
MOSFET讲解
我们上一章讲到了米勒电容,它在MOSFET开通过程中,扮演着十分重要的角色。为什么呢?待会儿再来看。
我们先来研究一下MOSFET如何进行导通的。首先,它和三极管一样,也有一个导通阈值。在模电里面,阈值的概念是必须要理解的。也就是说,任何器件的导通和关断都要有一定的电压,对应的就是开通电压 和 关断电压,我们把这个电压叫做阈值。同样的,MOSFET也有阈值电压。
MOSFET导通电压:4.5V 2V 1V。
这个电压的高低在我们电路中,有多大的作用呢?我们知道了,MOSFET栅源之间是有压差Vgs(导通阈值电压),那么,由于布局等因素,GND上会有干扰存在,地上就会毛刺,所以,控制的信号线上也会有干扰毛刺吧,这些毛刺是叠加在有效的控制波形上的,比如说叠加在方波上。
如上图所示,比如说地上有了毛刺了,本来是不导通的,由于毛刺的存在,就会让MOSFET误导通。
同样的,在高电平时也可能会产生毛刺是吧。那么高的毛刺没有关系,低的毛刺有可能造成误关断。上面讲的误关断,误开通,我们叫做误触发。
所以,从抗干扰角度来看:阈值电压越高越好。当然,高阈值和低阈值都有它们各自的优缺点。等我们把MOSFET导通原理讲清楚了之后,再来分析阈值高低阈值导通电压的各自优势劣势,这涉及到器件选型。
我们接下来来研究MOSFET的导通,就用比较经典的4.5V导通阈值电压来进行讲解。
我们看上面这幅图。我们知道,对于N型的晶体管或者三极管来说,要想饱和导通,它的E极需要接地。但是对于MOSFET来说,要想导通,不一定非要接地,而是谈它的GS之间的压差,也就是GS压差要大于4.5V(这是假设导通阈值是4.5V),换句话说,GS电容上两端的电压>4.5V,MOSFET就是导通的。这个和三极管还是有区别的。
所以,MOSFET的S源极也可以接地,也可以不接地,只要压差大于4.5V,它就导通。不过,为了后面的讨论方便,我们还是把S极接地,讨论起来就相对方便。
假设栅极加一个控制信号时:
高电平肯定需要大于4.5V,这里我们取12V。高电平,我们叫做ON,代表管子开通;低电平就是OFF了,为0V。
我们先看ON期间,管子是导通的是吧,来看一下它的回路是什么样子的。
分别有两个回路,如上图所示。当有了回路之后,还要分2种情况进行讨论。
我们看GS之间的电阻和电容,它们的阻抗是一样的吗?需要讨论在充电瞬间,电阻R2和电容C3的内阻关系。
很明显,刚开始电压刚刚上电时,电容等效成短路,基本上电流都是从电容上走的。随着给电容进行充电,这个时候电容上的电压越来越高,电容的等效阻抗也会越来越高,那么,电阻也会流过电流。
GS电容充电过程分三个阶段:
1. GS电容的内阻为0,几乎所有的电流,从电容上走;
2. GS电容没有充满的情况下,电流分别从电阻及电容流过,但主要的电流依旧 从电容走;
3. 电容充满了,电流不从电容走,只有很小的电流从电阻走。
这个阶段我们讨论的是:GS电容和下拉电阻的回路分流问题。
上图就是GS电容的充电电压波形示意。
-
MOSFET讲解(1)
MOSFET讲解
MOSFET又叫场效应晶体管,那么如何去学好MOS管呢?大家都对三极管有了解了,已经弄明白了。实际上,要想学好MOS管,首先我们要对标三极管来学。我们说,三极管有N管和P管,同样的,MOS管也有N型和P型。这里我们只讲N型MOSFET。
N型MOSFET也有三个极:栅极 源极 漏极,字母表示:G D S,对标三极管的b c e(如上图所示)。三极管具有功率放大的作用,放大的是电流,实际上是等效内阻变小。MOS管也具有功率放大的作用。那么,不管三极管还是MOS管,它都有控制极和输出极。
控制极的电流很小,控制信号的内阻大
输出极的电流很大,输出信号的内阻小
我们先举例三极管,对于三极管来说,用一个很小的ib电流,来控制很大的ic电流。Ib和Ic有β的关系,假设β是100,那么Ic比Ib大100倍,等效CE内阻比BE内阻小了100倍。
三极管放大的前提条件,Ib Ic需要有电流。什么条件下有电流呢?Ib Ic各自必须要有完整的回路,既然有回路,就有电流,这个三极管的特质。那么,既然有回路有电流,必然会产生功耗。
所以,电路设计中,三极管用的越多,则功耗就越大。这就是早期的主控芯片功耗大的原因。
三极管是一个流控流型的器件,因为有这个问题的存在,我们得改进啊是吧,不用电流来控制呢?这样子,场效应管就应运而生了。MOSFET的诞生,需要解决三极管的瓶颈问题。
由于三极管这里的β只有100倍,如果Ic要求是100A,Ib至少要是1A是吧,也就是说,你的控制极就要是1A,如果我有10个,那就要是20A,那这要多大的电源才能提供啊,这是一个问题,对不对啊。控制电流太大,要求电源提供更大的能力。
我们再来看下面一个问题:
Ib是1A,那么BE压降是多少呢,也就是Vbe = 0.7V。如果说0.7V*Ib=0.7V*1A=0.7W,功耗Pb就是0.7W了。Ic=100A,Vce=0.3V,Pc=30W。这些都会在三极管里消耗,也就是说三极管本身就要差不多消耗30W,很明显,我们为了控制100A,这个管子就要消耗30W。如果10个管子,就要300W。那这个电路就无法设计了啊。而且30W的管子,发热是无法承受的,所以说就无法使用。
所以说,我们就得出结论:晶体管它的功率和电流不能太大,有上限限制,基本上都是mA级别,也有A级别,但是那个就用的很少了。我们就把希望寄托于场效应管上面,它是一个新事物的诞生,它一定要解决功耗的问题,也就是解决电流的问题,任何一个器件都是有内阻的。要想没有功耗,就不能有电流,不能有电流应该怎么办?
在电子世界中,除了电流是电压,既然流控型不行,那么能不能做一个压控型的呢?这个管子的导通不导通只关注电压的阈值,那么这个时候就让电流很小,就能解决这个问题。
对于MOSFET来说,GS内部有一个电容存在的。充满电后,维持住这个电压,那么就持续导通了。
在充电过程中,是消耗电流和产生功耗的;当充电完成后,电容上是没有电流的,没有电流,则没有损耗。那么,这个时候功耗很低了。
我们再来看一下DS,它之间可以等效成一个可变电阻。这个可变电阻,在关断期间时,则阻值无穷大;在开通期间,则阻值无穷小。所以,DS之间也没有功耗,即使一个很大的Id,但是乘以一个无穷小的电阻,它的功耗就很小。那么,这样子也实现了放大,但是功耗也小,这就完美解决了三极管的问题。
我们说,模电的本质:电压,电流,斜率。元器件也有对应电压型和电流型。
电压型:电容,mosfet
电流型:电感,三极管
当然,还有其他器件,后面学习到的时候再说。
我们说,斜率实际上指的就是速度。那么,我们器件又需要有斜率,又需要有速度,但是半导体器件它又怕极高的速度,因为极高的速度,就相当于抗瞬间的过冲不够又容易坏,所以说又要它快,但是又不能极快,这就是斜率。
所以说,模电的本质就是电压 电流 斜率,
那么,我们把MOS管这个器件设计出来,也是从这样一个思路出发,最后形成的。而且,就像我们世界一样,万物相生相克才能和谐。实际上对于我们的模电来说,它我们这个世界是一样的。比如说电路中的电流,它的电压可以用电容来进行钳位;比如说电路中的电压,它的电流激变可以用电感来进行限制。电压斜率可以用电容解决,电流斜率可以用电感来解决,这样就能让电路和谐,让它稳定工作。
关于MOSFET的Rdson损耗问题以及高压低压MOSFET的区别,我们下次接着讲。
-
MOSFET讲解(13)
MOSFET讲解
这种单桥臂载波的管子,哪个管子发热会大呢?
MOS管的四大损耗:开通损耗,关断损耗,导通损耗,续流损耗
上桥臂载波情况下:
ON期间
M1载波
M2恒通
开通损耗
有
/
关断损耗
有
/
导通损耗
有
有
续流损耗
/
/
OFF期间
M1载波
M4
M2恒通
开通损耗
/
/
/
关断损耗
/
/
/
导通损耗
/
/
有
续流损耗
/
有
/
假设I = 1A,Rdson = 3mΩ。所以,
导通损耗:P = I^2*Rdson = 3mW
续流损耗:P = U*I = 0.7V*1A = 0.7W
四大损耗各有占比,随着电流的变化而变化的。可以通过理论去计算,但是不准,实际情况需要通过波形测试进行计算。我们这里先定性,不定量。
定性:
假设电流很小时,开关损耗比重大,哪个管子载波哪个管子热;续流损耗大于导通损耗;
假设电流很大时,续流损耗大,哪个管子载波它的对应同一个桥臂的另外一个管子就热;开关损耗占比相对较小;哪个管子恒通,则相应的导通损耗最小。
一个周期内,载波的管子,在ON期间有损耗,OFF期间可以休息;恒通的管子在全周期内都有损耗;续流的管子在ON期间休息,OFF期间有损耗。
如果负载电流实在是太大,比如100A,那么管子的续流相当大,开关损耗和导通损耗也大。那就要加散热片,即使加散热片,也要看管子的制作工艺,是塑封还是金封。发热源是晶圆,传到散热片上面肯定是有热阻的,那么如果电流太大,发热很大,温度就来不及传到散热片上,那么MOS管依旧会坏掉。这个时候,我们要尽快把热源全部传出来,可以分散热源。比如采用并联MOSFET的方式,那么这种方式有两个好处,首先管子价格便宜了,热阻也没那么大了。其实由于MOSFET是压控型的,所以可以并联,只要控制GS电压接到同一个驱动极,所以电压是一致的。
怎么解决续流损耗的问题呢?即使2个并联,承担的续流损耗也是很大的。
当M1载波,M2恒通,M4续流时,它们的发热是不一样的。可能M4发热最大,M1次之,M2发热最小。能不能在同一个周期内,让它们之间的热源再重新分配呢?
思路:让热源进行分配,大家一起来承担。
分时载波,一会儿上管载波,一会儿下管载波,这样就把热源分散了。
总结:
1、并联MOS管。——增加硬件成本,软件不需要改动。
2、分时载波。 ——硬件不变,软件改动,降低硬件成本。
在大电流情况下,二极管发热是最严重的。而且它的散热只能通过MOSFET内部散热,那么能不能把体二极管拿到外面来呢?对于一个器件而言,它的功率受内部晶圆影响,也受封装影响,体积越大,散热越好。封装对应着一个温升的参数:器件每增加一瓦,对应的温升。相同的功率损耗,体积越小,则温升越大。
如何把体二极管拿到外面来呢?让MOSFET体二极管失效,在外面增加一个大封装的二极管,这样就分散了发热源。
对于上面这幅图,怎么解决M4的续流问题呢?如何让M4的体二极管不通。
如上图所示,是不是可以把MOSFET的体二极管失效了呢。但是会增加2个器件,而且体积也大。
那么左边的二极管放在上边好,还是放在下边好呢?肯定是放在上边好,如果放在下边,会影响GS电压,同时,二极管的结电容效应会引起GS之间的震荡。毕竟下面是控制极,还是希望控制极相对干净一点。一旦控制极受到干扰,就会影响漏极。
根据之前的分析,当上管载波时,下管才会有续流,所以,只要在三个下管各加2个二极管即可,这样就解决了下管发热的问题。那么有时候大家看到有个电机控制有9个管子,这是因为下面的三个MOSFET又各自并联了一个管子。
总结:
1、上桥载波,在三个下管分别各并联一个MOSFET,功率降额使用
2、上桥载波,在三个下管采用两个三极管方案失效体二极管,续流损耗拿到外面来,给MOSFET降低损耗负担。
3、通过软件的办法,实现上下桥分时载波。
在单桥臂载波的时候,更多的时候采用上桥载波。主要考虑的是上管自举电容充电的问题。