发帖数

43

原创数

43

关注者

16

阅读数

9324

点赞数

2

张角

  • MOSFET跨导及夹断区的理解

    大家好!我是张飞实战电子张角老师!今天给大家分享MOSFET跨导及夹断区的理解。

    相比于晶体管,MOSFET这个管子相对来说比较复杂,它的工作过程理解起来还是有一定难度的。那么这其中最难以理解的部分,可能还是MOS管开关损耗的理解。相比导通损耗和续流损耗,MOS管开通和管断的过程要复杂得多。

    为了对MOS的开通过程有更好的分析,我们先回顾两个比较基本的概念。U = I*RR是电阻,它可以有效地表示流过电阻的电流变化对它两端电压的影响作用,比如如果流过这个电阻的电流越大,那么它两端的电压也就越高。电导是电阻的倒数,如果我们用Λ来表示的话,那么上面这个式子就可以转换为I=ΛU。这个式子可以用来表示一个回路中电压的变化对流过这个器件电流的影响。这个影响可以是幅值,也可以是相位,幅值的影响大家都比较清楚,比如加在电阻两端的电压越高,那么流过它的电流也就越大。在对相位的影响上,最典型的场景,比如LC并联谐振电路,这里我们就不展开分析了。

    MOS管这个器件,存在着一个跨导的概念。那么跨导,本质上还是电导,表示一个器件中电压的变化对电流的影响,但是它描述的却是两个回路的相关参数之间的关系。具体在MOS中,跨导gm表示的是Vgs也就是栅极电压对Ids的影响,用公式来描述的话,就是Ids = gm*(Vgs-Vth)。上面这个公式表示的是什么意思呢?①只有当Vgs的电压超过Vth电压之后,Ids电流才会发生明显的变化。②在Vgs达到平台电压之前,Ids的电流和(Vgs-Vth)这两者之间的差值呈现一个正比关系,这个正比关系的比例系数就是跨导。跨导这个概念,有点类似晶体管里面的电流放大倍数β,但是β这个参数表示的是电流和电流之间的关系,所以是放大倍数,不能称之为跨导。跨导这个特性是MOS管固有的自然属性,我们这里暂且不要去深究。

    另外一个比较难以理解的过程,在平台区,Vds的电压才开始直线下降。实际上Vds下降的过程对应着夹断区不断变长的过程。

    图片8.jpg

    从上图可以看出来,夹断点的电压Vpinch-off始终等于Vgs  Vth,也就是不变的。随着夹断区不断变长,Vds的电压肯定是不断变小的,当D端(漏极)的电压也达到Vgs-Vth时,MOS管也就基本被完全开通了。在后续的过程中,Vd的电压会逐渐降低到0V,这个时候基本上Vgd = Vgs(忽略MOS管导通阻抗的话)。一般在实际项目中,我们还会继续抬升Vgs,进一步拓宽沟道宽度,进而减小Rds,但是这个时候Vgs的作用已经很小了。

    分析清楚了两个相对比较难以理解的过程,我们下面就可以较为详细地推导出管开关损耗相关计算了。但是大家注意了,这些计算本质上还只是近似估算,某种意义上讲开关损耗是没有办法精确计算的。

    这篇文章先到这里,下篇文章我们再详细计算MOS管的开关损耗。


    收藏 0 回复 0 浏览 105
  • 对RC电路的直观理解

    大家好!我是张飞实战电子张角老师!今天给大家分享对RC电路的直观理解。

    RC电路是较为常见的一种组合电路,在电路设计的过程中,经常用到。目前网上有各种各样RC的资料,但是给RC添加正弦激励实测的波形,其实很难找;能够同时把电容和电阻上的电压放在一起的波形就更少。没有这些波形,其实我们对RC电路就缺少直观的认识。

    本文将站在实测波形的基础上,给大家分析RC电路的正弦波响应,争取给大家带来直觉和感官上的理解。关于RC电路频率响应推导的文章,大家自行百度就好了。

    首先给出,我们实测电路的原理图。大家也看到了这个原理图,其实没有什么稀奇。


    图片4.jpg

    下图蓝色的部分,是我们输入的正弦信号,也就是Ui;黄色部分,是电容上的电源,也就是原理图中的Uo

    图片5.jpg

    从这个波形图中,我们首先可以看出电容电压的相位肯定是滞后于信号源的:①在一个周期内,输入信号Ui领先输出信号Uo达到峰值;②从波形图来看,即使是在启动的第一个周期中,两个信号的相位差和稳态的时候也是一致的。另外,大家可以看到明显的幅值衰减,这个其实就是滤波的效果。随着正弦波信号频率不断增加,当Uo的峰值达到Ui峰值的0.707倍的时候,正弦波的频率就是截止频率。

    图片6.jpg

    我们下面来看第二幅图,图中紫色部分的波形是输入电压波形和输出电压波形相减的结果,实际上这个电压波形是不是就是电阻上的电压呀(一般的示波器里面都有不同通道信号幅值相减的功能)。那么从图上,我们是不是直觉上得出来如下的结论:①电阻上的电压相位是领先于信号电压相位的;②电阻上电压的相位是领先于电容上电压相位的。其实第二个很容易理解,对于电容来说,i=c*du/dt,也就是说电容的电流是电压的微分。微分就意味着相位超前。如果我们把这个超前相位角具体化的话,那就是90度。因为本文不涉及公式推导,其实这就是一个复数旋转的计算,但是大家可以从图形上是不是很直观的看出来紫色和黄色的波形,相位角相差就是90°。

    那么如果我们给RC电路加上一个方波信号呢?下图中的方波信号,是一个高频的方波,

    图片7.jpg

    占空比是50%。大家可以看一下,因为方波的周期太短了,如果大家熟悉电容充放电公式的话,电容的电压一定会充到一个相对高的值以后,再一个周期内充电升高的电压才会等于放电放掉的电压。因为在电容电压比较低的时候,电容充电的速度是比较快的;而放电速度则相对较慢。随着电容电压的提高,充电速度则不断降低,但是放电的速度则不断加快,那么当电容达到某一个电压幅值的时候,充电和放电的时间正好相等。

    从上面这个图可以看出来,高频的交流信号肯定是被滤波了。大家还可以实测下,频率越高,输出的三角波峰峰值之间相差也就越小。

    这个过程还有一个额外的收获,那就是电容的直流电压分量。这个直流电压分量理想情况下,只和方波的占空比有关系。不知道大家有没有联想到buck电路的占空比,其实这里思路是一样的:buck电路输出的直流电压和占空比有关系,交流成分被LC滤波器给滤掉了。LC滤波器,一方面滤波能力比较强,再一个能量损失也小,所以buck电路不使用RC滤波器,而是使用LC滤波器。


    收藏 0 回复 0 浏览 196
  • 斜坡补偿的由来

    在开关电源中,有一个相对不容易解释清楚,但是对整个系统的稳定性又起到重要作用的知识点-斜坡补偿。我们打算后面用一系列文章来深入探讨一下这方面的知识,争取让大家能够对这块内容有相对深入的理解。


    我们首先需要回答的问题,就是开关电源系统为什么需要斜坡补偿,或者说斜坡补偿解决了哪方面的问题?从宏观上看,开关电源的调节系统可以分为两部分,一个是内环电流环,一个是外环电压环。之所以把电流环称之为内环,主要是因为它的调节速度更快,属于单周期调节。电压环,调节速度相对电流环肯定是更慢的,对于输出滤波电容来说,电压是电流的积分。电流环调节的结果要经过数十个周期之后,才能在电压信号上做出反应。


    当系统的输出电流或者说电感电流,因为负载变化或者输入电压变化产生扰动的时候,在电压环起到调节作用之前,有可能发生电感电流的次谐波震荡,或者说是电感电流的振铃现象。


    这里之所以说是有可能,主要是因为这个现象发生在CCM模式下,而且占空比大于50%的时候。当占空比小于50%的时候,扰动电流的震荡会自动趋于收敛。我们下面用图形化的方式给大家演示一下。

    image.png

    上图是占空比小于50%的时候,负载变化引起的电流扰动。大家可以看一下,这个扰动在几个周期后,会自动收敛。具体为什么会收敛呢?我们可以推算一下电流扰动量的变化公式。

    image.png


    大家可以看一下,当占空比小于50%的时候,Ton的时间内电流上升的斜率大于Toff时间内电流下降的斜率。那么这个电流抖动量的变化趋势和这两个斜率的比值很有关系。


    具体的推导公式,如上图所示。我们这里是分两个三角形来进行计算的。在θ0的三角形内,根据正切关系可以得到δIo和It(两个三角形的公共部分)比例关系式①。实际上这个正切关系本质上是不是就是斜率呀。同样的,在θ1这个三角形内,我们也可以得到式子②。这两个式子化简以后,就会得到关系式③。大家可以看一下,δI1是不是要比δIo要小呀,因为m2小于m1,对吧。当占空比小于50%的时候,是不是m2一定小于m1呀。那么经过几个周期的迭代,是不是扰动量慢慢变小后,系统也就收敛了。


    但是当占空比大于50%的时候,也就是m2大于m1的时候,这个扰动量是不是也来越大,结果也就会出现电感电流的震荡,如下图所示。

    image.png

    对于控制系统的开关芯片而言,Ton的时间也就会出现波动,也就是会出现所谓的大小波交替现象的发生。这个波动的电流对系统的稳定性是无益的,需要想办法解决掉。那么该怎么解决呢?这个也就是斜坡补偿的由来:既然这种情况下m2大于m1,我们能不能通过斜坡补偿的方式使得整体的斜率大小关系发生改变呢?


    下篇文章,将会对这个问题进行更深入的分析。


    收藏 0 回复 0 浏览 125
  • 斜坡补偿的由来

    大家好,我是张飞实战电子张角老师!

    在开关电源中,有一个相对不容易解释清楚,但是对整个系统的稳定性又起到重要作用的知识点-斜坡补偿。我们打算后面用一系列文章来深入探讨一下这方面的知识,争取让大家能够对这块内容有相对深入的理解。

    我们首先需要回答的问题,就是开关电源系统为什么需要斜坡补偿,或者说斜坡补偿解决了哪方面的问题?从宏观上看,开关电源的调节系统可以分为两部分,一个是内环电流环,一个是外环电压环。之所以把电流环称之为内环,主要是因为它的调节速度更快,属于单周期调节。电压环,调节速度相对电流环肯定是更慢的,对于输出滤波电容来说,电压是电流的积分。电流环调节的结果要经过数十个周期之后,才能在电压信号上做出反应。

    当系统的输出电流或者说电感电流,因为负载变化或者输入电压变化产生扰动的时候,在电压环起到调节作用之前,有可能发生电感电流的次谐波震荡,或者说是电感电流的振铃现象。

    这里之所以说是有可能,主要是因为这个现象发生在CCM模式下,而且占空比大于50%的时候。当占空比小于50%的时候,扰动电流的震荡会自动趋于收敛。我们下面用图形化的方式给大家演示一下。

    image.png

    上图是占空比小于50%的时候,负载变化引起的电流扰动。大家可以看一下,这个扰动在几个周期后,会自动收敛。具体为什么会收敛呢?我们可以推算一下电流扰动量的变化公式。

    image.png

    大家可以看一下,当占空比小于50%的时候,Ton的时间内电流上升的斜率大于Toff时间内电流下降的斜率。那么这个电流抖动量的变化趋势和这两个斜率的比值很有关系。

    具体的推导公式,如上图所示。我们这里是分两个三角形来进行计算的。在θ0的三角形内,根据正切关系可以得到δIoIt(两个三角形的公共部分)比例关系式①。实际上这个正切关系本质上是不是就是斜率呀。同样的,在θ1这个三角形内,我们也可以得到式子②。这两个式子化简以后,就会得到关系式③。大家可以看一下,δI1是不是要比δIo要小呀,因为m2小于m1,对吧。当占空比小于50%的时候,是不是m2一定小于m1呀。那么经过几个周期的迭代,是不是扰动量慢慢变小后,系统也就收敛了。

    但是当占空比大于50%的时候,也就是m2大于m1的时候,这个扰动量是不是也来越大,结果也就会出现电感电流的震荡,如下图所示。

    image.png

    对于控制系统的开关芯片而言,Ton的时间也就会出现波动,也就是会出现所谓的大小波交替现象的发生。这个波动的电流对系统的稳定性是无益的,需要想办法解决掉。那么该怎么解决呢?这个也就是斜坡补偿的由来:既然这种情况下m2大于m1,我们能不能通过斜坡补偿的方式使得整体的斜率大小关系发生改变呢?

    下篇文章,将会对这个问题进行更深入的分析。

     


    收藏 0 回复 0 浏览 158
  • 讲透有史以来广受欢迎的运算放大器μA741(7)---放大级、输出级及米勒电容

    大家好,我是张飞实战电子张角老师!

    image.png

    我们接着上面文章,继续分析运放的输出级。受限于运放封装的体积,运算放大器的推电流和拉电流都不会太大。那么为了限制电流超过一定的值,uA741内部还专门设计了限流电路,包括推电流限制电路和拉电流限制电路。

    我们先来看推电流限制电路这个功能的实现主要是靠T13这个管子。从电源流经T12R9,然后再到负载(Vo)的电流达到一定程度的时候,R9两端的电压就会达到0.7V。我们来计算一下这个电流值。I = 0.7V/R9 = 0.7V/27R = 25mA。那么也就是说,当流过R9的电流值达到25mA左右的时候,R9两端的电压会达到0.7V。大家看一下,R9这个电阻两端的电压是不是恰好就是T13的基极和射极的端电压,那么也就是说此时T13饱和导通了。T13饱和导通以后,T12Vbe是不是就小于0.7V了,那么T12是不是就关闭了。那么自然流过R9的电流就变小了。R9T13这两个器件在这里扮演的,是不是就是一个负反馈的角色,本质上利用的是N管基极电位和集电极电位相位相反的特性来实现的。

    image.png

    下面我们来看一下,拉电流是如何限流的,这个功能主要是由Q8T15T14这三个器件来实现的。

    当运放输出为低的时候,比如Q6射极电压低于输出电压Vo,那么对于运放来说,电流的流向是从负载流向Q7的。当流经R10的电流达到一定程度的时候,Q8这个管子就会开通了。Q8这个管子开通了之后,T15这个管子就会流过电流了。T14这个管子是镜像T15的,这里是一个镜像电流源,也就是说T15T14的集电极电位是相同的。随着流过T15的电流越来越大,那么T15集电极上的电压也就越来越低。同理,T14集电极上的电压也就越来越低,当T14集电极上的电压降低到一定程度之后,那么T8T9这两个管子就会趋向于关闭状态。这个时候,T9集电极上的电压就会升高了,那么Q6射极上的电压也就提高了,那么流过Q7IbIc都会变小了。这样也就起到了拉电流的保护作用。

    另外,在741内部,当时的研发人员还搞了一个比较牛逼的发明,就是在放大级和输出级之间加上了一个电容,这个电容也称作米勒电容。

    image.png

    因为T8T9组成达林顿管形式,放大倍数会很大。如果每个管子的放大倍数是100倍,那么两个管子联合起来就是10000倍。那么也就是说F点电压微小的变化,都会在T9的集电极产生非常剧烈的电压变化。这个剧烈的dv/dt,其实对运放的稳定性是不利的。为了解决这个稳定性的问题,科学家们尝试了很多办法,最终在uA741这个运放内部形成了一个较为完美的方案,就是加上一个小电容。在这之前,运放内部都是没有电容的。我们下面来看一下,这个电容可以起到什么样的效果。我们假定F点电压是向下降低的,那么T9 C端的电压是不是急剧上升呀;这个急剧上升的电压,会通过弥勒电容给F点充电,对吧。那么F点的电位是不是就不会下降得那么快了。那这样,T9 C点的电压也就不会上升得那么快了,也就是这个地方的dv/dt也就没有那么剧烈了,进而整个运放系统的稳定性也就得到了改善。但是这个改善,肯定是有成本的。对于放大交流信号,大家很容易看出来,运放整体的增益是下降的;信号的频率越高,运放整体的增益也就越低。某种意义上讲,这个电容在这里起到的是一个低通滤波的作用。


    收藏 0 回复 0 浏览 214
×
张角