发帖数

54

原创数

54

关注者

19

阅读数

26019

点赞数

5

赵云

  • 我们需要知道的自控式永磁同步电机的那些事

    大家好,我是张飞实战电子的赵云老师,今天给大家讲解自控式永磁同步电机的那些事。

    一、概述

    自控式永磁同步电动机是由永磁同步电机、变频器和转子位置传感器组成的机电一体化系统,如下图一所示。

    1.png 

    图一:自控式永磁同步电机的构成

    一般来说,市场上存在多种型式的变频器,例如,交直交电流型、交直交电压型、交交电流型和交交电压型。永磁同步电机与不同类型的变频器结合可以组成不同类型的自控式永磁同步电机,本文的讨论对象是用于精密伺服控制系统的交直交电压型自控式永磁同步电机。


    二、自控式永磁同步电机的基本工作原理

    下图二、图三是交直交电压型自控式永磁同步电机的结构示意图,其中图二是由单相交流电源供电的自控式永磁同步电机,图三是由三相交流电源供电的自控式永磁同步电机,它们的主电路由整流器、滤波电容器和逆变器组成。


    通常,整流器采用单相不控整流器或三相不控整流器,整流桥把单相或三相 50Hz 的交流电压转换成恒定的直流电压,整流桥的直流电压输出经电容平滑滤波后被送至逆变器。逆变桥是由六个 180°导通的功率开关器件M1M2M3M4M5M6组成的电压型三相半桥逆变电路,逆变器通常采用正弦脉宽调制(SPWM)或空间矢量脉宽调制(SVPWM),其输出为对称的三相脉宽调制电压。逆变器的输出电压被施加到自控式永磁同步电机的定子三相电枢绕组上,使电机正常运行。


    2.png 

    图二:单相交流电源供电的自控式永磁同步电机示意图

    3.png 

    图三:相交流电源供电的自控式永磁同步电机示意图


    在一般的三相同步电机中,当UVW三相电绕组同时接上三相对称的频率为f 的正弦电压 UuUvUw时,三相电枢绕组内便流过三相对称的频率为f 的正弦电流IuIvIw,各相电流在各自的绕组轴线上产生随时间按正弦规律变化的磁动势 FuFvFw,三个磁动势在空间叠加便产生合成的电枢磁动势 Fa。合成的电枢磁动势 Fa的幅值是不随时间而变化的恒定值,但在空间以ω=2Πf 角速度连续旋转。如果规定电流流入绕组的方向为正(十)方向,流出绕组的方向为负()方向,则在电机运行的任意时刻,对UVW三个绕组中电流而言,有时是二进一出,有时是一进二出,例如,电流从U相绕组和W 相绕组流入,而从 V相绕组流出;或电流从 U相绕组流入,而从 V相绕组和 W相绕组流出。我们把电枢电流 IuIvIw按一定规律在电枢绕组中的流向称之为"流向状态",把电枢磁动势 FuFvFw按一定规律在空间的取向称之为"取向状态"。在三相同步电动机运行的一个周期中,电枢绕组内的电流有六个不同的"流向状态";相应地,FuFvFw三个磁动势在空间也有六个不同的"取向状态",每一个状态持 60°电角度,如图所示。在同步电动机中,每一个电流的"流向状态"和磁动势的"取向状态"对应一个"磁状态",每一个"流向状态"内,合成的电枢磁动势F转过 60°电角度;六个相互衔接的"流向状态"之间是连续的变化,而不是跳跃式的变化。


    4.png 

    图四:一般三相同步电机的运行状态


    在自控式永磁同步电机(PMSM)中,我们采用恰当的正弦脉宽调制或空间矢量脉宽调制 (SVPWM)的逆变器就能满足上述一般三相同步电机的运行条件。在自控式永磁同步电机中,逆变器输出的三相脉宽调制电压同时接通自控式永磁同步电机的定子三相电枢绕组,电机的三相电枢绕组在对称的三相脉宽调制电压的作用之下,流过三相对称的接近正弦的连续电流,并在定子内腔产生连续旋转的电枢磁场,牵动转子磁场一起同步旋转,具体运行过程如表所列。这表明,在自控式永磁同步电机中,同样存在着相互衔接的连续变化的六个"流向状态";不同点在于逆变器输出的三相脉宽调制电压的基波频率不是固定不变,也不是独立变化的; 而是受制于电机的转速,任何瞬间三相电枢绕组的通电状态都由永磁转子的位置来决定,即跟随着电机转速的变化而同步变化,并能确保电枢磁场和转子磁场之间有接近 90°电角的夹角。因此,自控式永磁同步电机有时也被称为自同步式永磁同步电机。


    5.png 

    表一:自控式永磁同步电机的运行状态


    三、永磁同步电机与无刷直流电机比较

    自控式永磁同步电机(PMSM)与无刷直流电机(BLDCM)相比较,在定转子结构上没有多大差异,它们的主要区别在于,无刷直流电机通常采用120°导通型的逆变器,电动机的供电电压为直流矩形波,在一般情况下,定子三相电枢绕组为一相一相或二相二相轮流接(导)通,并在一相或二相电枢绕组内流过接近矩形波的断续电流,从而在气隙内形成跳跃式的旋转磁场,以这种方式运行的电机被称之为无刷直流电机(BLDCM),它是在有刷直流电机的基础上演变发展而来的,承接了有刷直流电机的设计理念;而自控式永磁同步电机通常采用 180°导通型的逆变器,电机的供电电压为三相正弦脉宽调制波形,定子三相电枢绕组被同时接(导)通,并流过三相对称的接近正弦的连续电流,从而在气隙内形成连续的圆形旋转磁场,以这种方式运行的电动机被称之为自控式永磁同步电机(PMSM),它是在一般同步电机的基础上演变发展而来的,承接了同步电机的设计理念。


    从理论上讲,上述两类电机的转子磁极既可以被设计成能够在工作气隙内产生接近梯形波的磁场,又可以被设计成能够在工作气隙内产生接近正弦波的磁场。为了使上述两类电机能够实现输出转矩容量和运行效率最大化,以及力矩脉动最小化,对于无刷直流电机(BLDCM)而言,希望其转子永磁体磁极能够在气隙内产生接近梯形波的磁场,并在电枢绕组内感生出接近梯形波的的反电动势;对于自控式永磁同步电机(PMSM)而言,希望其转子永磁体磁极能够在气隙内产生接近正弦波的磁场,并在电枢绕组内感生出接近正弦波的的反电动势。


    四、总结

    本文给大家介绍了自控式永磁同步电机的结构组成及其基本工作原理,分析了单相永磁同步电机及三相永磁同步电机的控制示意图,驱动永磁同步电机的逆变器通常采用正弦脉宽调制(SPWM)或空间矢量脉宽调制(SVPWM),其输出为对称的三相脉宽调制电压。然后分析了永磁同步电机的运行过程,并总结出了一个运行状态表供大家参考。最后,对比了永磁同步电机及无刷直流电机,为了使两类电机能够实现输出转矩容量和运行效率最大化,以及力矩脉动最小化,对于无刷直流电机(BLDCM)而言,希望其转子永磁体磁极能够在气隙内产生接近梯形波的磁场,并在电枢绕组内感生出接近梯形波的的反电动势;对于自控式永磁同步电机(PMSM)而言,希望其转子永磁体磁极能够在气隙内产生接近正弦波的磁场,并在电枢绕组内感生出接近正弦波的的反电动势。本篇文章就分享到这里,感谢观看!

    收藏 0 回复 0 浏览 459
  • 电机正反转该如何实现?

    一、有刷电机结构介绍

    无刷直流永磁电动机广泛地用于驱动和伺服系统中,在许多场合,不但要求电动机具有良好地启动和调节特性,而且要求电机能够正反转。本篇文章,我们着重来分析下有刷永磁直流电动机地正反转原理,为后文直流无刷电机正反转分析奠定基础。

    为了更好的了解无刷电机的正反转原理,我们先以有刷电机为例来说明一下有刷电机的正反转是如何实现的。首先我们需要知道有刷电机的旋转原理,那么为了更好的了解有刷电机的工作原理,我们先来看下有刷电机的组成,下图为有刷电机的整体示意图:

    1.png 

    图一:直流有刷电机

    接下来我们将上图中的有刷电机拆开,可以看到有刷电机内部构造,首先看到的下图为定子永磁体:

    2.png 

    图二:定子永磁体

    然后是电刷,也即是有刷电机名词中的有刷的来源,就是有电刷,电刷的形式如下图三所示:

    3.png 

    图三:电刷示意图

    然后是转子结构,包括转子转轴、绕制铜线的铁芯、铜线电枢绕组、换向器组成,如下图四所示:

    4.png 

    图四:转子结构示意图

    上面介绍的电刷就是用于跟换向器进行连接的,连接的示意图如下图所示:

    5.png 

    图五:电刷与换向器连接示意图

    二、有刷电机转动原理介绍

    实际工作过程中,电刷是跟外部电源引线连接的,这样电流就会从电源正极出发,经过电刷,经过与电刷连接的换向器,经过绕组,经过电刷,回到电源负极。由于转子电枢线圈处于永磁体磁场中,所以通电的线圈就会在磁场中受到安培力的作用,这样转子就会转动起来。

    6.png 

    图六:线圈电流方向及受力方向示意图

    如上图六所示,红色箭头表示线圈的受力方向,蓝色箭头表示线圈的电流方向,这样线圈将会逆时针旋转。

    当旋转到下图七所示的位置时,我们可以看到,换向器连接的电源的正负发生了变化,此时线圈中的电流方向也会发生变化,因此根据左手定则,可以判断出线圈受安培力的方向,这个力会让线圈继续保持逆时针旋转。

    7.png 

    图七:换向器连接电源方向发生变化线圈电流及受力示意图

    下图八表示线圈电流方向与图七电流方向相反,受力方向也相反,换向器,顾名思义就是让线圈中的电流流向发生变化,这里通过换向器跟电刷的连接,实现线圈的电流方向变化,实现线圈受力方向发生变化。

    8.png 

    图八:换向器连接电源方向发生变化线圈电流及受力示意图

    就这样,线圈不断的旋转,对应的换向器连接电源的极性不断发生变化,这样就保证了线圈能持续逆时针进行旋转下去,这就是有刷电机的旋转原理。

    三、有刷电机正反转

    从上面的电机旋转原理来看,电机的受力跟磁场有关,跟线圈的通电方向有关,当磁场确定了,通电方向确定了,那么线圈受到安培力的方向就确定了。这个力的方向可以用左手定则来判定,具体左手定则如下图九所示:

    9.png 

    图九:安培力判定示意图

    根据上面介绍的内容,下面给出一个逆时针旋转的示意图:

    10.png 

    图十:线圈逆时针旋转示意图

    如果我们把上图十中的旋转方向规定为正向旋转,那么该怎么实现让线圈反方向旋转呢?我们说,线圈是在力的作用下转动的,那么我们只要改变力的方向是不是就可以实现线圈反方向旋转啊?如何改变力的方向呢?这里就有两种情况可以改变力的方向了。

    第一种:改变线圈电流方向。

    这种方法可以将电刷电源的方向交换,那么对应的换向器的电源方向就会变化,因此线圈种的电流方向也会发生变化,电流方向发生了变化,就会让线圈受力的方向发生变化,具体如下图十一所示:

    11.png 

    图十一:线圈顺时针旋转示意图

    大家可以看到,根据此时电源方向及电流方向(蓝色箭头方向),可以用左手定则判断此时线圈所受安培力的方向如图中的红色箭头所示,因此我们可以知道线圈会顺时针旋转,也就是说,这样实现了线圈反向转动。那么我们对比逆时针旋转的电流方向可以知道,顺时针转动时,电流方向发生了180度变化。这是第一种实现线圈(电机)正反转的方法。

    第二种:改变永磁体磁场方向

    此时将永磁体的磁极交换,磁场方向如紫色箭头所示,线圈的电流方向不变,那么由左手定则,可以判断出线圈左侧此时所受安培力的方向向上,线圈右侧此时所受安培力的方向向下,因此线圈此时将顺时针旋转。

    12.png 

    图十二:永磁体磁极交换

     

    因此交换永磁体磁极,也可以实现线圈反向旋转,那么其实交换永磁体磁极就实现了永磁体磁场方向发生了180度变化,这是第二种实现线圈(电机)正反转的方法。

    好了,那么关于有刷电机如何实现正反转的两种方法就给大家讲完了,关于直流无刷电机,我们下篇文章再来给大家分享,谢谢大家!


    收藏 0 回复 0 浏览 362
  • 电机概念及分类介绍

    一、电机概念介绍

    从广义上讲,电机是电能的变换装置,包括旋转电机和静止电机。旋转电机是根据电磁感应原理实现电能与机械能之间相互转换的一种能量转换装置;静止电机是根据电磁感应定律和磁势平衡原理实现电压变化的一种电磁装置,也称其为变压器。

    这里主要介绍旋转电机,旋转电机的种类很多,在现代工业领域中应用及其广泛,可以说,有电能应用的场合都会有旋转电机的身影。

    1.png 

    图一:伺服电机

    二、电机分类及应用概述

    众所周知,电机是传动及控制系统中的重要组成部分,随着现代科学技术的发展,电机在实际应用中的重点已经从过去简单的传动向复杂的控制转移;尤其是对电机的速度、位置、转矩的精确控制。但电机根据不同的应用会有不同的设计和驱动方式。因此人们根据旋转电机的用途,进行了基本的分类。

    2.png 

    图二:旋转电机的分类

    三、伺服电机

    伺服电机广泛应用于各种控制系统中,能够将输入的电压信号转换为电机轴上的机械输出量,拖动被控元件,从而达到控制目的。

    伺服电机的应用现状:

        橡胶轮胎行业:轮弹簧钢丝机、线切割机、铝包钢丝机等。

        食品行业:糖度显示仪、大型烤箱、咖啡机等。

        服装行业:三菱高头机、纺纱机、电脑绣花机、印花机。

    3.png 

    图三:绣花机电机

    四、步进电机

    步进电机是一种将电脉冲转化为角位移的执行机构;通俗来说就是当步进电机驱动器接收到一个脉冲信号时,它就会驱动步进电机按设定的方向转动一个固定的角度。

    步进电机的应用现状:

        数控机床制造领域、自动送料机、软盘驱动器、打印机、绘图仪、工业机器手、包装机械、汽车测试等。

    4.png 

    图四:软盘驱动器

     

    五、力矩电机

    力矩电机是一种扁平形多极永磁直流电机。其电枢有较多的槽数、换向片数和串联导体数,以降低转矩脉动和转速脉动。力矩电机有直流力矩电机和交流力矩电机两种。

    力矩电机的应用现状:

    交流力矩电机又可以分为同步和异步两种,目前常用的是鼠笼型异步力矩电动机,它具有低转速和大力矩的特点。一般在纺织工业中经常使用交流力矩电机。

    5.png 

    图五:力矩电机

    六、开关磁阻电机

    开关磁阻电机是一种新型调速电机,结构及其简单且坚固,成本低,调速性能优异,是传统控制电动机强有力竞争者,具有强大的市场潜力。    

    开关磁阻电机的应用现状:

        开关磁阻电机被应用于龙门刨床、锻压机床、纺织机械、造纸机、球磨机、风机

    压缩机、抽烟机等。

    6.png 

         图六:车用开关磁阻电机

    七、无刷直流电机

    无刷直流电机是在有刷直流电机的基础上发展起来的,但它的驱动电流是不折不扣的交流。无刷直流电机为了减少转动惯量,通常采用细长的结构。无刷直流电机在重量和体积上要比有刷直流电机小的多。

    无刷直流电机的应用现状:

    无刷直流电机的应用十分广泛,如汽车、工具、工业工控、自动化以及航空航天等等。具体可分为以下三种主要用途,第一:持续负载应用,如风扇、抽水机、吹风机。第二:可变负载应用,如油泵控制、发动机控制等。第三:定位应用,应用在大多数工业控制。

    7.png 

    图七:无刷直流电机

    八、直流电机

    直流电机是出现最早的电机,大约在19世纪末,其大致可分为有换向器和无换向器两大类。直流电机有较好的控制特性。直流电机在结构、价格、维护方面都不如交流电机,但直流电机具有调速性能好、启动容易、可载重启动等优点而被广泛应用。

    直流电机的应用现状:

        生活方面,被用于很多电动产品,如风扇、刮胡刀等。在宾馆中,自动门、自动门锁、自动窗帘都用到直流电机。直流电机还广泛应用于飞机、坦克、雷达等武器装备中。直流电机还可应用于机车牵引、如铁路机车直流牵引电机、地铁机车直流牵引电机等。

    8.png 

    图八:Z4直流电机

    九、交流电机

    异步电机是基于气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩而实现能量转换的一种交流电机。异步电机具有结构简单,制造、使用和维护方便,运行可靠及质量较小,成本较低等优点。     

    异步电机的应用现状:

        在异步电机中较为常见的是单相异步电机和三相异步电机,其中三相异步电机是异步电机的主体。三相异步电机可用于驱动压缩机、水泵、破碎机等,还可用于传动鼓风机、磨煤机、轧钢机、卷扬机等。单相异步电机在家用电气中使用较多,如电扇、冰箱、空调等。


    9.png 

    图九:风机、冰柜电机

    十、同步电机

    同步电机就是在交流电的驱动下,转子和定子的旋转磁场同步运行的电机。同步电机的定子和异步电机的完全一样,但同步电机的转子有“凸极式”和“隐极式”两种。     

    同步电机的应用现状:

        同步电机主要用于大型机械,如鼓风机、水泵、球磨机、压缩机、轧钢机以及小型、微型仪器设备或者充当控制元件,三相同步电机是主体。同步电机还可以当调相机使用,用于向电网输送感性或者电容性无功功率。


    10.png 

    图十:同步电机组成

    十一、旋转变压器

    旋转变压器是一种电磁式传感器,也称同步分解器,它是一种测量角度用的小型交流电动机,用来测量旋转物体的转轴角位移和角速度,由定子和转子组成。    

    旋转变压器的应用现状:

    旋转变压器是一种精密角度、位置、速度检测装置,适用于所有使用旋转编码器的场合,特别是高温、严寒、潮湿、高速、高震动等旋转编码器无法正常工作的场合。它可完全替代光电编码器、在机器人系统、机械工具、汽车、电力、航空航天等位置检测系统中。也可用于坐标变化、三角运算和角度数据传输、作为两相移相器用在角度--数字转换装置中。

    11.png 

    图十一:旋转变压器

    十二、感应同步器

    感应同步器将角度或直线位移信号变换为交流电压的位移传感器又被称为平面式旋转变压器。它有圆盘式和直线式两种。在高精度数字显示系统或数控闭环系统中圆盘式用于检测角位移信号,直线式用

    于检测线位移。

    感应同步器的应用现状:

        被广泛用于大位移静态与动态测量中,如三坐标测量机、程控数控机床及高精

    度重型机床及加工中心测量装置。

    12.png 

    图十二:感应同步器

    十三、自整角机

    自整角机是利用自整步特性将转角变为交流电压或交流电压变为转角的感应式微型电机,在伺服系统中被用作测量角度的位移传感器。自整角机还可用于实现角度信号的远距离传输、变换、接收和指示。

    自整角机的应用现状:

    被自整角机还可用于实现角度信号的远距离传输、变换、接收和指示。它被广泛用于冶金、航海等位置和方位同步指示系统和火炮、雷达等伺服系统中。

    13.png 

    图十三:自整角机

    十四、速度信号电机

    最具代表性的速度信号电机是测速发电机,实质上是一种将转速变换为电信号的机电磁元件,其输出电压与转速成正比。

    速度信号电机的应用现状:

    测速发电机在控制系统中主要作为阻尼元件、微分元件、积分元件和测速元件来使用。

    14.png 

    图十四:测速发电机

    15.png 

    图十五:电机分类图

     

    收藏 0 回复 0 浏览 323
  • 直流无刷电机SPWM正弦波控制原理

    一、前言

    随着控制技术的发展以及社会对节能要求的提高,直流无刷电机作为一种新型、高效率的电机被得到了广泛的应用。传统的直流无刷电机采用方波控制方式,控制简单,容易实现, 同时存在转矩脉动、换相噪声等问题,在一些对噪声有要求的应用领域存在局限性。针对这些应用,采用正弦波控制可以很好的解决这个问题。

     

    二、直流无刷电机的正弦波控制简介

    直流无刷电机的正弦波控制即通过对电机绕组施加一定的电压,使电机绕组中产生正弦电流,通过控制正弦电流的幅值及相位达到控制电机转矩的目的。与传统的方波控制相比, 电机相电流为正弦,且连续变化,无换相电流突变,因此电机运行噪声低。

    根据控制的复杂程度,直流无刷电机的正弦波控制可分为:简易正弦波控制与复杂正弦波控制。

    简易正弦波控制:

    对电机绕组施加一定的电压,使电机相电压为正弦波,由于电机绕组为感性负载,因此电机相电流也为正弦波。通过控制电机相电压的幅值以及相位来控制电流的相位以及幅值, 为电压环控制,实现较为简单。

    复杂正弦波控制:

    与简易正弦波控制不同,复杂的正弦控制目标为电机相电流,建立电流环,通过直接控制相电流的相位与幅值达到控制电机的目的。由于电机相电流为正弦信号,因此需要进行电流的解耦操作,较为复杂,常见的为磁场定向控制(FOC)及直接转矩控制(DTC

    本文将主要介绍简易正弦波控制的原理及其实现。

     

    三、简易正弦波控制原理

    简易正弦波控制即通过控制电机正弦相电压的幅值以及相位达到控制电机电流的目的。通常通过在电机端线施加一定形式的电压来使绕组两端产生正弦相电压。常见的生成方式为:正弦PWM以及空间矢量 PWM。由于正弦 PWM 原理简单且便于实现,因此简易正弦波控制中通常采用其作为PWM生成方式。图1BLDC 控制结构图,其中UxUyUz 为桥臂电压,UaUbUc 为电机绕组的相电压,以下对于不同种类的PWM调制方式的介绍将基于此结构图进行。

    1.png 

    1直流无刷电机控制框图

    1)三相正弦调制 PWM

    三相 SPWM 为最常见的正弦 PWM 生成方式,即对电机三个端线施加相位相差 120 度的正弦电压信号,由于中性点为 0,因此电机相电压也为正弦,且相位与施加的正弦电压相同。如图2所示。

    2.png 

    2三相调制 SPWM 端线电压

    (2)开关损耗最小正弦 PWM

    与常见的SPWM 不同,采用开关损耗最小正弦PWM 时,施加在电机端线上电压UaUbUc 并非正弦波电压,此时电机中心点电压并非为 0,但是电机相电压仍然为正弦。因此此类控制方式为线电压控制。见图3

    3.png 

    3开关损耗最小正弦 PWM 端线电压

    其中UxUyUz 为电机端线电压,UaUbUc 为电机相电压,可见相电压相位差为 120

    度。UxUyUz UaUbUc 的关系如下:

    4.png 

    合并后,UxUyUz 如下

    5.png 

    可见采用开关损耗最小正弦PWM 时,UxUyUz 相位差 120 度,且为分段函数形式, 并非正弦电压,而电机相电压 UaUbUc 仍然为正弦电压。且在 120 度区内端线电压为 0, 即对应的开关管常开或常关。因此与三相正弦 PWM 相比,开关损耗减少 1/3

    通过控制UxUyUz 的相位以及幅值即可以控制 UxUyUz,实现控制电流的目的。


    四、总结

    本篇文章给大家分享了直流无刷电机简易正弦波控制原理,它是实现正弦控制的基础,先把基础理论知识掌握之后,后面再具体实践就会更加得心应手了。


    收藏 0 回复 0 浏览 317
  • 方波无感控制中为什么说采集悬空相端电压为母线电压一半时有反电动势过零点?

    大家好,我是张飞实战电子的赵云老师,今天给大家讲解方波无感控制中为什么说采集悬空相端电压为母线电压一半时有反电动势过零点?


    一、概述

    在直流无刷电机的无传感器控制中,要想根据转子磁极与定子绕组之间的相对位置来实现电子换相,并对力矩和转速实施控制,就需要知道转子的位置。因为没有位置传感器,所以就需要通过某些算法来估算转子的位置。而估算转子位置的方法也有很多,如高频注入法、电感法、反电动势过零估算法等。

    在以上转子位置估算方法中,比较简单易实现的方法是反电动势过零估算法,该方法的实现原理是当某相反电动势出现过零点时(反电动势为零),必定有转子磁极的N极或S极与该相绕组对齐,然后对于方波控制来说,仅需再等待30度电角度即可对绕组的通电电流方向进行切换,以此方法即可实现对电机进行正常闭环控制。下图一为该方法的检测示意图:

    1.png 

    图一:反电动势过零点检测转子位置示意图

    上图一中,示意了有霍尔传感器控制时,当转子N极对齐U相绕组时,此时U相绕组感应出来的反电动势为0,出现反电动势过零点,假设转子逆时针旋转,则在有霍尔传感器方波六步换相控制时,图示位置再逆时针旋转30度电角度(一对极电机也是30度机械角度)后,HB霍尔将感应到转子磁极由N极到S极的变化,HB的输出电平状态也将发生跳变。

    当检测到三个霍尔中有任何一个霍尔输出电平状态发生变化时,会对绕组的通电电流方向进行切换。根据这个思路,即使把霍尔传感器去掉,只要我们能够检测到反电动势过零点之后,再过30度电角度,我们同样可以对绕组的通电方向进行切换。

     

    二、反电动势过零点检测方法

    通过前面的内容,我们已经知道只要能够检测出反电动势过零点,再延时30度电角度,即可对定子绕组的通电电流方向进行切换。那么,怎样才能够检测出反电动势过零点呢?要弄清楚这个问题,我们需要了解电机的电压平衡方程式,从电压平衡方程式的角度来推导这个问题。下图二示意了无转子位置传感器的功率驱动电路。图三示意了图二对应的等效电路图。

    2.png 

    图二:功率驱动电路

    3.png 

    图三:等效电路图

    当电机正常运行时,对于星型连接的三相电机电枢绕组的电压平衡方程式为:

    4.png 

    以上3个式子中,UunUvnUwn表示三相相电压,IuIvIw表示相电流,R表示绕组内阻,L表示绕组电感量,EunEvnEwn表示三相反电动势。

    对于图三的等效电路来说,此时绕组的通电是U相接电源正,V相接电源负,W相不通电(悬空相),根据这个关系,我们可以得出以下条件:

    5.png 

    为了进一步分析,我们画出绕组的驱动电压跟反电动势波形,如下图四所示:

    6.png 

    图四:绕组施加电压与相反电动势波形

    从上图四,我们可以知道,对于具有梯形波反电动势的电机来说,在悬空相出现过零点时,有以下关系成立:

    7.png 

    所以,在悬空相(W相)反电动势过零点的位置处,结合电压平衡方程式及已知条件(4)(5)(6)(7),可以推出:

    8.png 

    (7)式可以得出:

    9.png 

    (8)式拆分,可以得到:

    10.png 

    (9)式中,UuUvUw表示电机UVW三相线对地的电压(端电压),Un表示三相电机星型连接点n对地的电压。对(9)式进行整理,可以得到:

    11.png 

    此时对悬空相(W)求解端电压,则有:

    12.png 

    当出现悬空相(W)出现反电动势过零点时,可以推导得出以下最终式(12)的结论:

    13.png 

    按照同样的方式,对UV两相中出现悬空相时,也能得出与式(12)相同的结论。

     

    三、最终结论

    使用方波六步换相无感驱动控制策略控制直流无刷电机时,当检测到悬空相的端电压等于Vbus的一半时,则认为有悬空相反电动势过零点。

    实际控制时,因为每个60度电角度内有很多个PWM周期,而采集端电压每个PWM周期都采集,因此只能检测采样悬空相端电压的值跟Vbus/2进行比较,当比较结果匹配,则认为已经有过零点出现。

    本篇文章,主要分析了为什么采集悬空相的端电压跟Vbus/2电压一致时,对应着悬空相的反电动势过零点,从电压平衡方程式入手,结合实际波形进行理论推导,最终得出的结论与我们的描述一致。

    收藏 1 回复 0 浏览 310
×
赵云