发帖数

54

原创数

54

关注者

19

阅读数

26014

点赞数

5

赵云

  • 实际测量三相直流无刷电机反电动势波形

    一、前言

    很多人在开发有霍尔传感器方波控制时,在如何准确确定出三相绕组的通电顺序方面存在疑惑,在网上找了很多资料都是只给出了相序表,但是真正拿过来引用时却往往对应不了自己的电机,导致项目开发过程的前期就遇到了困难,也让很多工程师在这个方面捉摸不透,无法得到一个准确的方法来作为开发的参考。

    那么基于这样的原因,这里就打算通过几期文章及配套视频来一步步给大家讲解整个从拿到一个新电机,到测量反电动势波形,再到确定绕组的通电顺序,最后利用驱动板验证我们的测试全流程实战过程。也期望通过这几期的内容分享让大家掌握这种方法,为以后的项目开发节省时间。

    本篇文章,作为一个前期准备,先掌握电机反电动势波形的准确测量方法。当然文章中的方法只是我们的经验总结,供大家参考,起到一个抛砖引玉的作用,如果大家有更好的方法,也欢迎大家能够分享。


    二、准备工作

    1.待测电机与拖动电机,两者连接关系如下图一所示:

    图片1.png

     

    图一:待测电机与拖动电机连接示意图

    上图一中的待测电机用于测量反电动势使用,而拖动电机用于将待测电机拖动,这样便于我们能够清晰的观察到待测电机的反电动势波形。图一中的连接方式不是最佳的,电机轴与轴之间最好能使用联轴器进行连接,因为手上没有合适的联轴器(联轴器的形状可以参考下图二),所以我使用胶带临时固定一下。

    当然,拖动待测电机的方式也不局限于这种,也可以使用其它的拖动装置或方法(有使用电钻跟待测电机连接,也有用手转动电机轴然后观察反电动势波形(这种方法反电动势波形很不均匀,故不推荐),还有先给电机通电旋转,然后断电,利用断电后电机旋转到停止的过程测量放电动势波形),只要能让待测电机匀速旋转即可。

    图片2.png 

    图二:电机联轴器实物图

    2.拖动电机驱动板,如下图三所示:

    图片3.png 

    图三:拖动电机驱动板实物连接图

    驱动板选用张飞实战电子BLDC课程配套驱动板,板中已经预先烧录好了有霍尔传感器方波控制代码,在反电动势波形测量中,我们就可以通过这块驱动板将拖动电机拖动旋转起来。

    3.三个120K插件电阻,如下图四所示:

    图片4.png 

    图四:三个120K插件电阻实物图

    三个120K插件电阻可以用于跟三相电机的三相线进行连接,用于模拟电机中心点,便于测量电机的相反电动势。当然这三个电阻也可以选择其它的阻值,满足几百K都行。电阻跟电机相线的连接关系如下图五所示:

    图片5.png 

    图五:电阻跟电机相线实物连接图

    4.示波器

    示波器是我们看波形的必备工具,所以没有示波器的话,大家就没办法做这个实验了,如果大家期望在研发的道路上深入,建议还是能够入手一台示波器。下图是我们使用的一台四通道的示波器,如下图六所示:

    图片6.png 

    图六:示波器实物图

    至此我们的准备工作就结束了,下面我们就准备开始上电将电机拖动起来,使用示波器观察反电动势波形了。


    三、动手实测波形

    1.测量相反电动势波形

    将示波器的三个通道探头的钩子分别勾到电机三相线的U/V/W,夹子夹在中心点N,具体的连接如下图七所示:

    图片7.png 

    图七:测量三相相反电动势波形硬件实物连接图

    连接好之后,我们通过驱动板将拖动电机拖动旋转起来,此时我们在示波器上就可以直观的看到三相相反电动势的实际波形图了,实测波形如下图八所示:

    图片8.png 

    图八:三相相反电动势波形测量图

    2.测量线反电动势波形

    将示波器的通道一的钩子勾到电机三相绕组的U相,夹子夹到V相,通道二钩子勾到电机三相绕组的W相,夹子夹到V相,此时可以测量得到UV/WV两个线反电动势的实际波形,实物连接图如下图九所示:

    图片9.png 

    图九:线反电动势测量硬件连接图

    按上图九连接好实物之后,拖动待测电机即可在示波器上看到UVWV对应的线反电动势实际波形图,具体如下图十所示:

     

    图片10.png

    图十:线反电动势波形图

    至此,我们已经能够通过以上方法将相反电动势和线反电动势的波形给测量出来了,相反电动势的测量方法我们是通过模拟中心点的方式得到的,但是不影响我们观察波形,这样的出来的波形变化规律是跟实际的相反电动势是一致的。当然,如果电机的中心点从电机中引出,我们就没必要使用以上方法来模拟测量相反电动势波形了。这里大家明白即可。


    四、总结

    通过以上介绍方法,我们可以实际测量得到反电动势的波形,这迈开了我们确定绕组通电顺序的第一步,下次将给大家测量霍尔波形跟反电动势波形,并通过波形分析及矢量图合成分析来总结出一个绕组通电顺序表,大家有条件的可以提前自己实现一遍,那么本篇文章就给大家介绍到这里,谢谢大家!

     


    收藏 3 回复 0 浏览 5858
  • BLDC霍尔安装角度你知道多少?

    大家好,我是张飞实战电子的赵云老师,今天给大家讲解BLDC霍尔安装角度。


    一、前言

    对于BLDC的两相导通三相星型连接六状态控制来说,常常使用3个霍尔传感器,而它们在电机内的布置方式常见的有两种方案,其一是相互间隔60度电角度排列,其二是相互间隔120度电角度排列。而对于控制人员来说,我们需要知道拿到的电机,霍尔传感器的安装方式如何,这样才能决定相应的控制策略。

    那么关于霍尔的位置摆放,一般是由电机本体设计相关的人员需要考虑的,而有的时候,又需要电机控制人员对电机本体设计有一定的了解,这样才能加深理解电机原理,对电机控制起到相辅相成的作用。

    二、霍尔安装角度辨别

    当我们拿到一个新的三相直流无刷电机时,可以通过测量三个霍尔信号,然后分析它们之间的关系即可知道霍尔的安装角度间隔是60度电角度还是120度电角度。那么,60度电角度跟120度电角度在三路霍尔波形上怎么来辨别呢?下面以波形图来说明一下:

    1.png 

    从上图左边波形关系可以知道,H1的上升沿跟H2的上升沿之间相差120度电角度,而H2的上升沿跟H3的上升沿相差120度电角度,H3上升沿跟H1的上升沿之间也是相差120度电角度,同理可以看出下降沿也是相差120度电角度,所以可以根据上图左边的波形推导出三个霍尔是以120度电角度安装的。

    从上图右边波形关系可以知道,H3上升沿跟H1上升沿相差60度电角度,H1上升沿跟H2上升沿相差60度电角度。H1的下降沿跟H2的下降沿之差也是60度电角度,H3H2下降沿只差也是60度电角度,所以可以根据上图右边的波形推导出三个霍尔是以60度电角度安装的。

    所以,如果拿到一个电机,没有说明霍尔的安装形式,则完全可以根据自己实测波形得出安装角度方式。

    三、霍尔安装角度分析

    2.png 

    图:两对极内转子电机结构示意图

    对于三相直流无刷电机来说,霍尔的安装角度一般都是120度电角度安装及60度电角度安装,而且以120度电角度安装居多,但是有的时候,从一些资料上看到的霍尔安装角度并不是我们说的两种形式,这又是为什么呢?

    对上图来说,我们很容易知道,三个霍尔H1H2H3在结构上是120度机械角度安装的,跟我们认识的完全不一样了,而且即使根据机械角度与电角度的关系,转换为电角度也是240度电角度安装的,那么,是不是确实存在240度电角度安装的方式呢?

    我们来分析一下这幅图,就可以找出最终的答案,从上图中,我们知道定子绕组有6个,则两个相邻绕组之间的夹角是60度机械角度,而转子有2对磁极,共4个磁极,则每个磁极所占的夹角就是360/4=90度机械角度。

    图中,转子将会以顺时针方向转动,在图中的位置时,H1感应到N极到S极的磁极变化,为了分析方便,我们假设霍尔状态切换在磁极切换处发生,再假定,霍尔传感器感应到N极输出高电平(1),感应到S极输出低电平(0),则图中位置时,H1输出将发生一个由高电平到低电平的变化(下降沿)

    而我们说的霍尔的安装角度间隔,都是指每个霍尔相同沿跳变之间的间隔,所以我们要知道H2H3发生下降沿时,转子要转过的电角度是多少?由上图我们可以知道,下一个最近感应到磁极N到磁极S变化的霍尔将会是H2,所以我们需要从图中求解出H2位置到磁极边界点的角度。

    3.png 

    也就是我们要求解上图中的角1是多少,经过分析,很容知道这个角160度机械角度,也就是知道,当转子再顺时针旋转60度机械角度时,H2将感应到磁极N到磁极S的变化,H2输出将发生一个下降沿跳变。而根据机械角度与电角度之间的关系,很容易知道60度对应的机械角度是120度电角度。

    同理我们可以推出H3在上图的位置,再转过120度机械角度,H3将感应到磁极N到磁极S的变化,H3输出将发生一个下降沿跳变。而在H2感应到磁极N到磁极S的变化之后,H3只需要转子再转动60度机械角度(120度电角度),则将感应到磁极N到磁极S的变化,所以我们可以推出,三个霍尔输出下降沿的角度间隔是120度电角度。

    按照同样的思路,可以推出三个霍尔输出上升沿的角度间隔也是120度电角度,所以我们可以知道,其实对于上图中霍尔的放置,还是遵循120度电角度安装变化的规律。有的时候,因为电机体积的影响,安装形式稍微有些变化,会把其中一个霍尔安装到对面的位置,但是波形的变化规律还是一致的。

    4.png4.png

    上图波形就是我们根据电机结构示意图推导出来的霍尔输出波形。


    四、总结

    本篇文章给大家分析了霍尔的角度安装问题,三相直流无刷电机的霍尔安装角度一般是60度电角度或者120度电角度,但是有的时候拆开电机,却不能直观看出是两种形式的哪一种,所以知道分析方法,就可以很容易推导出霍尔安装形式,万变不离其宗,相信知道了方法之后,大家就不会再对具体是哪种安装形式有疑问了,本次文章,就给大家分析这么多,希望大家多多讨论、交流。

    收藏 2 回复 0 浏览 5348
  • 直流无刷电机启动问题

    大家好,我是张飞实战电子的赵云老师,今天给大家分享直流无刷电机启动问题。

    直流无刷电机的启动需要知道当前转子所在位置,有传感器时可通过传感器获得转子位置信息。但在无位置传感器情况下如果不能精确地估算出转子的初始位置,将会引起电机抖动甚至失步,从而无法启动。使用最广泛的转子预定位方法,是给定一个确定的定子磁场方向,让转子旋转到转子磁场与定子磁场方向重合的位置。这就相当于已知转子位置,从而可以正确启动。如下图一所示:


    图片1.jpg

    图一:直流无刷电机转子预定位示意图

    电机启动前,存在让转子自然静止的阻力。定子合成磁场与转子磁场的夹角决定了转子定位转矩的大小。定位转矩必须克服阻力转动至预定角度以便正确启动。但是转子的初始位置是随机不确定的,这就表示转子收到的定位转矩也是不确定的。当定位转矩小于使转子克服阻力进行预定位时,将会导致启动失败。而这些无法预定位的角度被称之为预定位盲区如图(b)所示阴影区域。当转子静止时,其对应的盲区可以根据下列公式计算出来:

    图片2.jpg

    当定子合成磁场与转子磁场在盲区附近呈不能转动的夹角时,即便转子不能准确预定位到指定角度,在启动过程中也可通过直流无刷电机转矩功角自平衡的特性把转子拉入到同步。但当定子合成磁场与转子磁场互为相反,夹角在 180度电角度附近时,这种情况便会发生失步。为解决上述问题,可采用二次定位以确保转子能够正确到达预定角度。具体操作是,在原先施加的定子磁场后再施加一个与之垂直的定子磁场,如此便能保证两次驱动转子转动的过程中避开所有的启动盲区,而使得转子能可靠的完成预定位。

    图片3.jpg

    图二:二次定位示意图

    这种二次定位的方法虽然实现了直流无刷电机的无位置传感器控制启动,但存在不能适用的工况。例如对于要求带载启动时,该方法便会有启动失步的问题。亦或者要求不能有转动直接启动的工况,该方法亦无法实现。

    而高频注入法在初始位置检测时仅仅将高频信号注入到 d 轴,并不会产生转矩使电机旋转。能很好的满足不允许启动转动的场合。关于高频注入算法的一些思想,我们会在后面的文章中提及,欢迎大家继续关注,这篇文章就先分享这么多,谢谢大家。


    收藏 2 回复 0 浏览 542
  • FOC中的三种电流采样方式,你真的会选择吗?

    一、前言:电流采样的作用

    FOC控制算法中,采样电流是算法实现的基础且又相当重要的一部分,准确的电流采样能给算法带来事半功倍的效果,电流采样准确了,那么为后面的坐标变换得到准确的结果打下很好的基础,用一句话来形容就是“基础不对,努力白费”,由此可见电流采样在整个FOC算法中的作用。

    那么电流采样的方式一般分为三电阻、双电阻、单电阻,这三种采样方式都有其优点和缺点,方案的不同,对应的电流处理方式也就不同,系统最终运行的效果可能也会有差异,所以这三种方案也有其适用的场合。那么这篇文章会结合这三种方式来给大家进行相关的分析及总结,起一个抛砖引玉的作用,希望读者能够举一反三,有更优的方式。

    1.png 

    图一:三种采样方式优缺点对比

    二、三种硬件拓扑结构

    2.png 

    图二:三电阻方案逆变桥连接示意图

    3.png 

    图三:三电阻方案运放连接示意图

    4.png 

    图四:双电阻方案逆变桥连接示意图

    5.png 

    图五:双电阻方案运放连接示意图

    6.png 

    图六:单电阻方案逆变桥连接示意图

     

    7.png 

    图七:单电阻方案运放连接示意图

    三、采样的关键之处

    电流的采样有峰值电流和平均电流采样,一般比较常见的是平均电流采样及其控制,那么对平均电流的采样方式其实也有两种,一种是检流电阻放在逆变桥的上桥的下端,另一种就是上面我们逆变桥的示意图中的检流电阻接在逆变桥的下桥的下端。

    一般的方式都是将采样电阻放在逆变桥下管的下端,这种方式对应的检流电路相对简单,而且对应的功耗也会降低,那么检流电阻放在逆变桥下管的下端时采集的是续流电流,然后我们可以在下桥开通的中点进行采样,此时对应的电流反映了平均电流,因此对应的电流控制就是平均电流控制。

    那么,如果我们使用的是三电阻方式采样的话,选用的ADC模块必须至少要有三个通道同时采样的功能,这样才能确保采样得到的三相相电流是同一时刻的电流,此时才能保证Iu+Iv+Iw=0,这个公式成立。这样的话,才能根据下图八所以的波形,对采样窗口小的一相电流进行重新计算。

    8.png 

    图八:SVPWM第一扇区PWM波形

    而如果是双电阻采样的话,只有两个采样电阻,得到的电流无法使用Iu+Iv+Iw=0这个公式,因此,即使碰到采样窗口小的情况,如果不进行算法处理的话,双电阻方案就出现局限性了。而要想得到更好的适应场景,就必须对双电阻方案进行算法补偿,这也是双电阻方案的关键之处。

    同样对于单电阻采样方案,需要根据不同的开关组合来得到对应的电流,而且需要在一个PWM周期内采样两次,这种方式更是不能满足Iu+Iv+Iw=0,只能靠算法来进行补偿修正,所以单电阻的方式更加困难,也是目前市面上的难点,如果能把难点解决,这种方式是最优且最便宜的方式。

    四、电流采样方式选取

    在电机控制中,对电流采样的采样转换方式一般都是使用PWM触发ADC来转换,以微芯公司的单片机为例,ADC模块会被配置为自动采样和触发转换,如下图九所示为自动采样,触发转换序列示意:

    9.png 

    图九:自动采样和触发转换序列示意

    PWM模块设置的触发点匹配之后,触发信号就会给到ADC模块,此时上图九中的采样开关就会断开,然后ADC模块开始转换,转换完成即可得到对应的采样电流的电压信号的AD数值,在程序中使用这个数值进行算法编写验证即可。

    五、三种采样方式的对比及注意事项

    1、三电阻采样方式

    这种方式是三种方式中较简单的,直接使用三个检流电阻采样电机的三相相电流,这样得到的结果比较直接,然后只需要根据扇区找出采样窗口小的一相,然后使用公式Iu+Iv+Iw=0,把采样窗口小的一相相电流重新计算出来,这样得到的结果准确度是最高的,后面相关算法的实现也是最好实现的,所以这是三电阻采样的优点。只是因为要使用三个检流电阻和三个运放,所以在硬件成本上会相对其它两种更高些。

    10.png 

    图十:触发点示意图(波形不考虑死区)

    2、双电阻采样方式

    双电阻采样的话,采样出来的两相电流就必须直接使用了,即使出现偏差也需要去使用,这种方式不能像三电阻采样那样,可以根据其它两相算出第三相电流。也就是说,双电阻需要考虑采样窗口的问题。如果要保证采样电流准确的话,必须保证采样窗口足够大。要让采样窗口足够大的话,就需要对PWM波形进行变形处理,但是这样会增加算法的执行时间。这种方式的优点是节省了一个检流电阻和一个运放。

    如下图所示,红圈前面为振荡区,如果采样窗口很小的话,只有振荡区,无法得到准确的电流,处理采样窗口,可以参照下图的方式,这样得出的电流就会更加准确。

    11.png 

    图十一:合适的电流采样区域

     

    3、单电阻采样方式

    单电阻和前面两种方式最大的不同是它无法做到同时得到两路电流信号,即使得到了两路电流信号,推算第三路电流信号也是有误差的。Iu+Iv+Iw=0这个公式是有条件的,就是这三个电流必须是同一时刻的电流。当电机的电感量较大时,得到的这两路电流更接近于真实情况。当电机电感量较小的时候,偏差就有可能比较大,所以如果电感量大的电流,可以选择单电阻采样。

    单电阻方式需要在一个PWM周期内进行两次采样,这样的话就需要对算法中开关状态进行分析,理清采样的时刻对应的重构电流属于哪一相的电流。

    12.png 

    图十二:单电阻方案电流采样转换触发点

    好了,关于电流采样的内容我们就讨论到这里,本文只是给大家提供一个思路,起个抛砖引玉的作用,期望大家能够把这部分做得更好,下次如果有机会,还会继续讨论相关的内容,谢谢大家,感谢观看! 

    收藏 1 回复 0 浏览 608
  • 反电动势到底该如何来理解?

    电机中的反电动势是如何产生的呢?要了解这个问题,我们需要回顾一下高中时学过的电磁学知识,在电磁学中我们学到过感应电动势,感应电动势又分为动生电动势和感生电动势两类。

    动生电动势是一种由于导体在磁场中运动而在导体内部产生的电动势。感生电动势是一种由于磁场变化而静止导体中产生的一种电动势。

    那么我们直流无刷电机中产生的反电动势属于感应电动势中的哪一类呢?因此我们就需要了解一下直流无刷电机的构造了。下图一是一个外转子直流无刷电机:

    1.png 

    图一:外转子直流无刷电机示意图

    那么从上图一中的电机组成来看,我们知道定子是线圈组成,也就是说导体是静止的,而转子由永磁体组成,永磁体是转动的,那么当永磁体转动时,对于线圈来说就是线圈的磁场发生了变化,因此对于这样构造的直流无刷电机来说,产生的感应电动势就是感生电动势。我们也可以知道,感生电动势的产生是转子永磁体对定子线圈的一个作用。

    从上面我们知道,随着电机转子(永磁体)的转动,会感生出一个感生电动势,这个感生电动势的方向可以根据楞次定律(感应电流的磁场总要阻碍引起感应电流的磁通量的变化)来进行判断。

    2.png 

    图二:外加磁场靠近线圈,磁通量增加时感应电动势方向示意图

    3.png 

    图三:外加磁场远离线圈,磁通量减小时感应电动势方向示意图

    从上图二图三我们可以知道,当线圈磁通量增加,感应电流产生的磁场方向要阻碍磁通量的增加,当线圈磁通量减小时,感应电流产生的磁场方向要阻碍磁通量的减小。

    那么这个感应电动势的方向跟线圈外加电压的方向是相反的,所以通常在电机中把这个感应电动势称为反电动势。这就是反电动势的来源。

    通过以上分析,我们知道了转子是永磁体,定子是绕组线圈的直流无刷电机产生的感生电动势就是电机的反电动势,那么根据感生电动势E的公式:

    微信图片_20211011095948.png

    由以上公式可以知道电机绕组中的反电动势的大小跟它的单位时间内的磁通量的变化量成正比。也就是说,在Δt固定的情况下,磁通量变化越大,那么反电动势就越大,反之磁通量变化越小,那么反电动势就越小。

    我们知道磁通量的公式如下:

    微信图片_20211011100136.png

    其中,B是磁感应强度,S是线圈平面面积,θ是线圈平面法线与磁感应强度B的夹角。

    4.png 

    图四:坐标系及角度定义示意图

    为了方便分析,我们假设坐标系及角度定义如上图四所示,从磁通量公式我们可以知道,定子绕组中的磁通量是按正弦规律变化的。

    5.png 

    图五:转子与定子线圈通电示意图

    在上图五中,转子永磁体磁力线方向与N方向一致,而线圈平面法线方向水平向右,如下图六所示:

    6.png 

    图六:磁感应强度方向与线圈平面法线方向示意图

    我们可以根据磁通量的公式知道,此时线圈磁通量为0。

    7.png 

    图七:转子与定子线圈通电示意图

    当转子转动到上图七所示的位置时,此时夹角θ为0,根据磁通量的公式可知,此时磁通量是最大的,因此对于一个固定的定子绕组来说,当转子转动一周,随着磁感应强度与线圈平面的夹角不同(也就是转子的位置角不同)那么磁通量的变化是按照正弦规律变化的。

    8.png 

    图八:磁通量曲线示意图

    从图八我们可以知道,在0度位置时,磁通量最大,但是磁通量的变化率最小为0(斜率为0),感应电动势为0,在90度时,磁通量为0,但是磁通量的变化率最大(斜率最大),感应电动势最大,在180度时,磁通量最大,磁通量的变化率又为0(斜率为0),感应电动势为0,在270度时,磁通量为0,但是磁通量的变化率最大(斜率反向最大),感应电动势最大。

    微信图片_20211011095948.png

    也就是上式中微信图片_20211011100334.png为单位时间内的磁通量变化,这个变化在数学中可以用求导来表示,也即是上式我们可以写成为:

    微信图片_20211011100344.png 

    因此我们可以根据上式画出感应电动势(反电动势)的波形,如下图九所示:

    9.png 

    图九:感应电动势波形示意图

    那么以上就是对电机中的反电动势的一些理解,仅供大家参考,起个抛砖引玉的作用,希望大家可以利用以上分析,对反电动势的理解更加深入、更加透彻、更加清晰。本篇文章就给大家分享到这里,谢谢大家!


    收藏 1 回复 0 浏览 257
×
赵云